scholarly journals Analytical quality by design approach in RP-HPLC method development for the assay of etofenamate in dosage forms

2015 ◽  
Vol 77 (6) ◽  
pp. 751 ◽  
Author(s):  
R Peraman ◽  
K Bhadraya ◽  
YPadmanabha reddy ◽  
CSurayaprakash reddy ◽  
T Lokesh
2020 ◽  
Vol 70 (4) ◽  
pp. 465-482
Author(s):  
Béla Kovács ◽  
Francisc Boda ◽  
Ibolya Fülöp ◽  
István Székely-Szentmiklósi ◽  
Éva Katalin Kelemen ◽  
...  

AbstractOffering a systematic and multivariate analysis of the analytical procedure, development and validation of HPLC methods using Quality by Design approach are in the limelight of current research trends. A new, experimental design-aided HPLC method for fampridine was developed and preliminarily validated according to current in-force international guidelines for linearity, accuracy, robustness and precision.The method offers a high throughput sample analysis, with an elution time of 2.9 minutes, and signal detection without excipient interference performed at 262 nm. The method proved to be linear between 1–15 µg mL−1 (R2= 0.9996). The mean recovery was found to be 98.7 ± 1.9 % in the tested range of 2.5–7.5 µg mL−1. Low RSD values (< 1 %) were obtained for both model, intra- and inter-day precision. The limit of detection and limit of quantification were 0.24 and 0.78 µg mL−1, resp. The method proved to be applicable for active substance assay in a pharmaceutical dosage form.


Author(s):  
SRUJANI CH ◽  
ANNAPURNA P ◽  
NATARAJ KS ◽  
KRISHNA MANJARI PAWAR A

Objective: A simple, accurate, and robust RP-HPLC method was developed and validated for the estimation of Duvelisib using analytical quality by design approach. Methods: The critical method parameters (CMP) were systematically optimized using box-Behnken design (BBD). The CMP’s selected were % organic phase composition, column temperature, and flow rate. The critical quality attributes investigated were retention time and theoretical plates. Results: Chromatographic separation was accomplished on Agilent Zorbax Eclipse C18 (150×4.6 mm, 5 μm) column. The optimized and predicted data from Design Expert software consist of mobile phase 0.1 % orthophosphoric acid (46.3%): Acetonitrile (53.7%), pumped at a flow rate of 0.91 ml/min at 32.6°C gave the highest desirability function of 1. The retention time of the drug was found to be 2.85 min. The developed method was validated as per the ICH Q2 (R1) guidelines. Conclusion: Based on the analysis of variance values, the selected models were found to be significant with p<0.05. The results of the validation parameters were within the acceptable limit. The stability of the drug was examined under different stress conditions forcibly and significant degradation was found in acidic condition.


2021 ◽  
Vol 71 (1) ◽  
pp. 57-79 ◽  
Author(s):  
Navya Ajitkumar Bhaskaran ◽  
Lalit Kumar ◽  
M Sreenivasa Reddy ◽  
Girish K Pai

AbstractThe objective of the present study was to develop a robust, simple, economical and sensitive HPLC-UV method using the “quality-by-design” approach for the estimation of irinotecan (IRI) in marketed formulations. RP-HPLC method was developed by applying Box-Behnken design with Hyper-Clone (Phenomenex®) C18 column (250 × 4.6 mm id, particle size 5 µm, ODS 130 Å) as a stationary phase. Acetonitrile and 20 mmol L−1 potassium phosphate buffer (pH 2.5) containing 0.1 % triethylamine in a ratio of 45:55 % (V/V) was used as a mobile phase. The sample was injected in a volume of 20 µL into the HPLC system. UV detector at 254 nm was used to estimate and quantify IRI. Isocratic elution was opted while the flow rate was maintained at 0.75 mL min−1. The retention time of IRI was found to be 4.09 min. The responses were found to be linear for concentration range of 0.5 to 18.0 µg mL−1 and the coefficient of determination value was found to be 0.9993. Percent relative standard deviation for intra- and inter-day precisions was found in the range of 0.1 to 0.4 %. LOD and LOQ values were found to be 4.87 and 14.75 ng mL−1, resp. Robustness studies confirmed that the developed method is robust with RSD of a maximum 0.1 %. The method is simple, precise, sensitive, robust and economical making it applicable to the estimation of IRI in an injectable formulation.


Sign in / Sign up

Export Citation Format

Share Document