scholarly journals Modeling protein-protein interactions in axon initial segment to understand their potential impact on action potential initiation

2021 ◽  
Vol 16 (4) ◽  
pp. 700
Author(s):  
Don Kulasiri ◽  
Piyush Bhardwaj ◽  
Sandhya Samarasinghe
2011 ◽  
Vol 105 (1) ◽  
pp. 366-379 ◽  
Author(s):  
Patricio Rojas ◽  
Alejandro Akrouh ◽  
Lawrence N. Eisenman ◽  
Steven Mennerick

GABAA receptors are found on the somatodendritic compartment and on the axon initial segment of many principal neurons. The function of axonal receptors remains obscure, although it is widely assumed that axonal receptors must have a strong effect on excitability. We found that activation of GABAA receptors on the dentate granule neuron axon initial segment altered excitability by depolarizing the voltage threshold for action potential initiation under conditions that minimally affected overall cell input resistance. In contrast, activation of somatic GABAA receptors strongly depressed the input resistance of granule neurons without affecting the voltage threshold of action potential initiation. Although these effects were observed over a range of intracellular chloride concentrations, average voltage threshold was unaffected when ECl rendered GABAA axon initial segment responses explicitly excitatory. A compartment model of a granule neuron confirmed these experimental observations. Low ambient agonist concentrations designed to activate granule neuron tonic currents did not stimulate axonal receptors sufficiently to raise voltage threshold. Using excitatory postsynaptic current (EPSC)-like depolarizations, we show physiological consequences of axonal versus somatic GABAA receptor activation. With axonal inhibition, individual excitatory postsynaptic potentials (EPSPs) largely retained their amplitude and time course, but EPSPs that were suprathreshold under basal conditions failed to reach threshold with GABAA activation. By contrast, somatic inhibition depressed individual EPSPs because of strong shunting. Our results suggest that axonal GABAA receptors have a privileged effect on voltage threshold and that two major measures of neuronal excitability, voltage threshold and rheobase, are differentially affected by axonal and somatic GABAA receptor activation.


2014 ◽  
Vol 15 (S1) ◽  
Author(s):  
Louis Jacques ◽  
Catherine E Morris ◽  
André Longtin ◽  
Béla Joos

Neuron ◽  
2011 ◽  
Vol 69 (5) ◽  
pp. 945-956 ◽  
Author(s):  
Barbara Zonta ◽  
Anne Desmazieres ◽  
Arianna Rinaldi ◽  
Steven Tait ◽  
Diane L. Sherman ◽  
...  

2007 ◽  
Vol 97 (1) ◽  
pp. 746-760 ◽  
Author(s):  
Yousheng Shu ◽  
Alvaro Duque ◽  
Yuguo Yu ◽  
Bilal Haider ◽  
David A. McCormick

Cortical pyramidal cells are constantly bombarded by synaptic activity, much of which arises from other cortical neurons, both in normal conditions and during epileptic seizures. The action potentials generated by barrages of synaptic activity may exhibit a variable site of origin. Here we performed simultaneous whole cell recordings from the soma and axon or soma and apical dendrite of layer 5 pyramidal neurons during normal recurrent network activity (up states), the intrasomatic or intradendritic injection of artificial synaptic barrages, and during epileptiform discharges in vitro. We demonstrate that under all of these conditions, the real or artificial synaptic bombardments propagate through the dendrosomatic-axonal arbor and consistently initiate action potentials in the axon initial segment that then propagate to other parts of the cell. Action potentials recorded intracellularly in vivo during up states and in response to visual stimulation exhibit properties indicating that they are typically initiated in the axon. Intracortical axons were particularly well suited to faithfully follow the generation of action potentials by the axon initial segment. Action-potential generation was more reliable in the distal axon than at the soma during epileptiform activity. These results indicate that the axon is the preferred site of action-potential initiation in cortical pyramidal cells, both in vivo and in vitro, with state-dependent back propagation through the somatic and dendritic compartments.


2016 ◽  
Vol 23 (4) ◽  
pp. 364-373 ◽  
Author(s):  
Anders Victor Petersen ◽  
Florence Cotel ◽  
Jean-François Perrier

The axon initial segment (AIS) is a key neuronal compartment because it is responsible for action potential initiation. The local density of Na+ channels, the biophysical properties of K+ channels, as well as the length and diameter of the AIS determine the spiking of neurons. These parameters undergo important modifications during development. The development of the AIS is governed by intrinsic mechanisms. In addition, surrounding neuronal networks modify its maturation. As a result, neurons get tuned to particular physiological functions. Neuronal activity also influences the morphology of the mature AIS. When excitatory neurons are hyperactive, their AIS undergo structural changes that decrease their excitability and thereby maintain the activity within a given range. These slow homeostatic regulatory mechanisms occur on a time scale of hours or days. In contrast, the activation of metabotropic receptors modulates the properties of ion channels expressed at the AIS within seconds and consequently produces fast adjustments of neuronal excitability. Recent results suggest that this plasticity plays important roles in physiological functions as diverse as memory formation, hearing, and motor control.


Sign in / Sign up

Export Citation Format

Share Document