scholarly journals Regulation of blood glucose concentration in type 1 diabetics using single order sliding mode control combined with fuzzy on-line tunable gain, a simulation study

2015 ◽  
Vol 5 (3) ◽  
pp. 131 ◽  
Author(s):  
Maryam Zekri ◽  
SoudabehTaghian Dinani ◽  
Marzieh Kamali
2018 ◽  
Vol 7 (1) ◽  
pp. 65-84 ◽  
Author(s):  
Mounir Djouima ◽  
Ahmad Taher Azar ◽  
Saïd Drid ◽  
Driss Mehdi

Type 1 diabetes mellitus (T1DM) treatment depends on the delivery of exogenous insulin to obtain near normal glucose levels. This article proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on comparing the first order sliding mode control (FOSMC) with a higher order SMC based on the super twisting control algorithm. The higher order sliding mode is used to overcome chattering, which can induce some undesirable and harmful phenomena for human health. In order to test the controller in silico experiments, Bergman's minimal model is used for studying the dynamic behavior of the glucose and insulin inside human body. Simulation results are presented to validate the effectiveness and the good performance of this control technique. The obtained results clearly reveal improved performance of the proposed higher order SMC in regulating the blood glucose level within the normal glycemic range in terms of accuracy and robustness.


2017 ◽  
Vol 13 (3) ◽  
pp. 55-63
Author(s):  
Bashar Fateh Midhat ◽  
Amjad Jaleel Humaidi

Abstract In this work, diabetic glucose concentration level control under disturbing meal has been controlled using two set of advanced controllers. The first set is sliding mode controllers (classical and integral) and the second set is represented by optimal LQR controllers (classical and Min-, ax). Due to their characteristic features of disturbance rejection, both integral sliding mode controller and LQR Minmax controller are dedicated here for comparison. The Bergman minimal mathematical model was used to represent the dynamic behavior of a diabetic patient’s blood glucose concentration to the insulin injection. Simulations based on Matlab/Simulink, were performed to verify the performance of each controller. In spite that Min-max optimal controller gave better disturbance rejection capability than classical optimal controller, classical sliding mode controller could outperform Min-max controller. However, it has been shown that integral sliding mode controller is the best of all in terms of disturbance rejection capability.   Key words: Optimal LQR control, Optimalminimax control, Sliding mode control, Integral sliding mode control.


Biotechnology ◽  
2019 ◽  
pp. 1126-1148
Author(s):  
Mounir Djouima ◽  
Ahmad Taher Azar ◽  
Saïd Drid ◽  
Driss Mehdi

Type 1 diabetes mellitus (T1DM) treatment depends on the delivery of exogenous insulin to obtain near normal glucose levels. This article proposes a method for blood glucose level regulation in type 1 diabetics. The control strategy is based on comparing the first order sliding mode control (FOSMC) with a higher order SMC based on the super twisting control algorithm. The higher order sliding mode is used to overcome chattering, which can induce some undesirable and harmful phenomena for human health. In order to test the controller in silico experiments, Bergman's minimal model is used for studying the dynamic behavior of the glucose and insulin inside human body. Simulation results are presented to validate the effectiveness and the good performance of this control technique. The obtained results clearly reveal improved performance of the proposed higher order SMC in regulating the blood glucose level within the normal glycemic range in terms of accuracy and robustness.


2021 ◽  
Vol 15 (2) ◽  
pp. 72-82
Author(s):  
Sheraz Ahmad Babar ◽  
Iftikhar Ahmad ◽  
Iqra Shafeeq Mughal

2021 ◽  
Vol 25 (2) ◽  
pp. 24-32
Author(s):  
Trinh Thach Thi Nguyen ◽  
Duy Tuan Nguyen ◽  
Thanh Ha Tuan Nguyen ◽  
Thi Huong Lan Do ◽  
Hoang Ngan Nguyen

Objective: Evaluation the hypoglycemic effect of Gydenphy capsules on Streptozotocin-induced type 1 diabetic in Swiss mouse model. Methods: The type 1 diabetic model was established by intraperitoneal injections of Streptozocin 150mg/kg in Swiss mouse. Then, the Gydenphy were orally administered daily at a dose of 576 mg/kg/day or 1152 mg/kg/day in 10 days. Blood glucose concentration in the Gydenphy oral groups with that of water control group and the intraperitoneal insulin injection group was compared. Results: Blood glucose concentration in the groups using Gydenphy (dose576 mg/kg/24h and dose 1152 mg/kg/24h) significal decreased compared to the distilled water group at (p <0.05 at the time of 4 hours, 8 hours; p <0.01 at the time of 3, 10 days). The hypoglycemic effect of Gydenphy at 576mg/kg/day and 1152 mg/kg/day at 4 hours, 8 hours and 3 days were inferior to insulin 0.1 UI/kg/day for glycemic control. However, the hypoglycemic effect ofGydenphy were equivalent to insulin after 10 consecutive days on treatment. Conclusion: Gydenphy capsules have hypoglycemic effects onStreptozotocin-induced type 1 diabetes in Swiss mouse model.


Sign in / Sign up

Export Citation Format

Share Document