scholarly journals Solid lipid nanoparticles: A drug carrier system

2011 ◽  
Vol 2 (1) ◽  
pp. 26 ◽  
Author(s):  
HardikR Mody ◽  
RashmiR Kokardekar
Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1183
Author(s):  
Mantosh Kumar Satapathy ◽  
Ting-Lin Yen ◽  
Jing-Shiun Jan ◽  
Ruei-Dun Tang ◽  
Jia-Yi Wang ◽  
...  

The blood–brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.


2011 ◽  
Vol 364 ◽  
pp. 313-316 ◽  
Author(s):  
Karn Orachai Kullavadee ◽  
Ruktanonchai Uracha ◽  
Siwaporn Meejoo Smith

SLN have shown a great promise as an alternative drug carrier for intravenous and dermal applications. This work focuses on the basic properties of drug-free Compritol® ATO 888 based SLN systems by using cationic surfactant (CPC) and nonionic surfactant (Tween 80). Effects of surfactant on the physical properties of SLNs were investigated in the absence of model drug to avoid the interaction between drug and surfactant. These SLN samples have different particle size, zeta potential and morphology. DSC was used to quantify the crystallinity of SLN systems. It was found that %RI of both SLNs was similar, indicating that types of surfactant did not affect on crystallization of solid lipid. Spherical-like particle was observed with SLN-C, while rod-like particle was found with SLN-T. The results demonstrated that surfactant plays an important role on SLN physical characteristics.


PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0171662 ◽  
Author(s):  
Kathleen Oehlke ◽  
Diana Behsnilian ◽  
Esther Mayer-Miebach ◽  
Peter G. Weidler ◽  
Ralf Greiner

2012 ◽  
Vol 37 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Fujian Leng ◽  
Jiangling Wan ◽  
Wei Liu ◽  
Bo Tao ◽  
Xuehong Chen

2021 ◽  
pp. 107-143
Author(s):  
Heba A. Gad ◽  
Reham S. Elezaby ◽  
Mai Mansour ◽  
Rania M. Hathout

Author(s):  
INDRAYANI D. RAUT ◽  
AREHALLI S. MANJAPPA ◽  
SHRINIVAS K. MOHITE ◽  
RAJENDRA C. DOIJAD

Objective: This study was aimed to design and characterize Paclitaxel-loaded Solid Lipid Nanoparticles (SLNs) to achieve site specificity,reduce toxicity and sustained release pattern. Methods: Paclitaxel-loaded solid lipid nanoparticles were fabricated by microemulsion followed by probe sonication technique using stearic acid as lipid and stabilized of the mixture of surfactants. In this study, 32 full factorial design was employed for optimizing the concentration of lipid as stearic acid and surfactant (soya lecithin) for the nanoparticles. The optimization was done by studying the dependent variable of particle size and % entrapment efficiency. Results: The results showed that the paclitaxel-loaded solid lipid nanoparticles prepared with the concentration of 33.31 % stearic acid and 500 mg of soya lecithin were optimum characteristic than other formulations. They showed the average particles size 149±4.10 nm and PDI 250±2.04. The zeta potential, % EE and % drug loading capacity was found to be respectively-29.7, 93.38±1.90 and 0.81±0.01. The optimized batch of Paclitaxel SLNs exhibited spherical shape with smooth surface analyzed by Transmission Electron Microscopy. In vitro study showed sustained release profile and was found to follow Higuchi Kinetics Equation. Conclusion: The SLNs of paclitaxel m et al. l the requirements of a colloidal drug delivery system. They had a particle size in nanosize; their size distribution was narrow and all the particles were in a spherical shape.


Author(s):  
MONA QUSHAWY ◽  
ALI NASR

Over the last few years, there has been a significant consideration of solid lipid nanoparticles (SLNs) as an alternative method to other colloidal dispersion methods for drug delivery. Special consideration has been given to the use of SLNs as a drug carrier in recent years. SLNs are aqueous dispersions in which the colloidal particles consist of solid lipids that are biodegradable. As a result of their physical stability, the protection of the entrapped drug from decomposition, the provision of controlled drug release, and the exceptional acceptability, SLNs have several advantages over other drug carriers. This article focuses on the techniques of SLNs preparation and characterization, the effect of formulation variables on SLNs properties, the routes of administration, and the pharmaceutical applications. The data used for this review was collected by searching on Google Scholar and PubMed using the following keywords during the period from 2010 to date.


Sign in / Sign up

Export Citation Format

Share Document