scholarly journals Depth dose characteristics of proton beams within therapeutic energy range using the particle therapy simulation framework (PTSim) Monte Carlo technique

2015 ◽  
Vol 38 (5) ◽  
pp. 408 ◽  
Author(s):  
Chung-Chi Lee ◽  
Siou-Yin Cai ◽  
Tsi-Chain Chao ◽  
Mei-Jyun Lin ◽  
Chuan-Jung Tung
2019 ◽  
Vol 19 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Shiva Zarifi ◽  
Hadi Taleshi Ahangari ◽  
Sayyed Bijan Jia ◽  
Mohammad Ali Tajik-Mansoury ◽  
Milad Najafzadeh ◽  
...  

AbstractPurpose:To examine detail depth dose characteristics of ideal proton beams using the GATE Monte Carlo technique.Methods:In this study, in order to improve simulation efficiency, we used pencil beam geometry instead of parallel broad-field geometry. Depth dose distributions for beam energies from 5 to 250 MeV in a water phantom were obtained. This study used parameters named Rpeak, R90, R80, R73, R50, full width at half maximum (FWHM), width of 80–20% distal fall-off (W(80–20)) and peak-to-entrance ratio to represent Bragg peak characteristics. The obtained energy–range relationships were fitted into third-order polynomial formulae. The present study also used the GATE Monte Carlo code to calculate the stopping power of proton pencil beams in a water cubic phantom and compared results with the National Institute of Standards and Technology (NIST) standard reference database.Results:The study results revealed deeper penetration, broader FWHM and distal fall-off and decreased peak-to-entrance dose ratio with increasing beam energy. Study results for monoenergetic proton beams showed that R73 can be a good indicator to characterise a range of incident beams. These also suggest FWHM is more sensitive than W(80–20) distal fall-off in finding initial energy spread. Furthermore, the difference between the obtained stopping power from simulation and NIST data almost in all energies was lower than 1%.Conclusion:Detail depth dose characteristics for monoenergetic proton beams within therapeutic energy ranges were reported. These results can serve as a good reference for clinical practitioners in their daily practice.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


2020 ◽  
Vol 1548 ◽  
pp. 012020
Author(s):  
M De Simoni ◽  
M Fischetti ◽  
E Gioscio ◽  
M Marafini ◽  
R Mirabelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document