scholarly journals A comparative evaluation of the effectiveness of erbium-doped yttrium aluminum garnet laser with other in house refurbishing methods for reconditioning stainless steel and ceramic brackets. An environmental scanning electron microscope and shear bond strength analysis: An in-vitro study

2015 ◽  
Vol 5 ◽  
pp. 202-207
Author(s):  
Nimay Devjee ◽  
Sonali V. Deshmukh ◽  
Sandeep Jethe ◽  
Charudatta R. Naik

Introduction Brackets can be recycled by sending them to a commercial recycling company but it is time consuming and the bracket cannot be bonded in the same appointment. Hence in-house methods for recycling of brackets would be beneficial to both the orthodontist and the patient. Aim In our study, we compared the shear bond strength of brackets after being recycled with erbium-doped yttrium aluminum garnet (ER:YAG) laser, sandblasting and the thermal method. Materials and Methods The study was carried out on 126 extracted premolars. The bonding procedure was performed with mandibular premolar metal and premolar ceramic brackets. Eighty-four teeth were subdivided into three groups for each method of recycling. These groups were further subdivided into two groups of 14 teeth each for the types of brackets used. Prior to the initial bonding the bracket was also viewed under an environmental scanning electron microscope to examine the meshwork of the brackets and once again after the respective recycling methods had been performed. Results We found that for stainless steel brackets, the sandblasting method was superior to the ER:YAG laser, as the recycled brackets showed a higher shear bond strength. For ceramic brackets the ER:YAG laser recycled group had the highest recycled shear bond strength therefore was the best method of recycling ceramic brackets.

2021 ◽  
Vol 1 ◽  
pp. 2-8
Author(s):  
J. Sandeep Reddy ◽  
K. B. Jayalakshmi ◽  
I. Sujatha ◽  
Prasannalatha Nadig ◽  
Nilima Salim Isani ◽  
...  

Objectives: The aim of this study was to evaluate and compare the push-out bond strength of bioceramic sealer and resin-based sealer on Erbium-doped Yttrium Aluminum Garnet (Er:YAG) treated root canals. Material and Methods: Sixty single-rooted teeth were collected, decoronated apical to the cementoenamel junction, maintaining the minimum root length of 14 mm. Samples were instrumented with WaveOne Gold primary file and divided into two experimental groups (n = 30), based on laser irradiation: Group I: No laser and Group II: Er:YAG laser irradiated. Groups I and II were again divided into two subgroups “a” (AH Plus) and “b” (mineral trioxide aggregate [MTA] Fillapex) with 15 samples in each group. As per the grouping, sealers were coated onto the canal walls and obturated. After 24 h of storage in 100% humidity at 37°C, all the samples were sectioned transversely and push-out test was performed using universal testing machine. Stereomicroscope was used to determine the mode of failure. A one-way analysis of variance was employed to compare the mean POBS. Kolmogorov–Smirnov and Shapiro–Wilk parametric tests were done to check the normality. The Games-Howell multiple post hoc test was used for pairwise comparison of the groups at a 95% confidence level. Results: Both AH Plus and MTA Fillapex exhibited higher bond strength in the laser-treated canals. AH plus exhibited superior bond strength compared to MTA Fillapex in both laser and non-laser-treated groups (P < 0.05). AH Plus groups have predominantly presented cohesive failure whereas MTA Fillapex presented mixed failures. Conclusion: Irradiation with Er:YAG laser in the root canal before obturation improves the bond strength significantly. The adhesive properties of MTA Fillapex are comparable to that of AH Plus.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Ruo-qiao Han ◽  
Kai Yang ◽  
Ling-fei Ji ◽  
Chen Ling

Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets.Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy.Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p<0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket.Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.


Sign in / Sign up

Export Citation Format

Share Document