scholarly journals Perfluoro-n-octane-assisted mega Weiss-ring technique for posterior vitreous detachment induction in retinal detachment

2019 ◽  
Vol 67 (9) ◽  
pp. 1463
Author(s):  
Piyush Kohli ◽  
Naresh Babu ◽  
Jayant Kumar ◽  
Kim Ramasamy
Author(s):  
Daniel A. Brinton ◽  
Charles P. Wilkinson

Evaluation of a patient for retinal detachment includes a thorough history and a complete ocular exam, including measurement of visual acuity, external examination, ocular motility testing, testing of pupillary reactions, anterior-segment biomicroscopy, tonometry, and binocular indirect ophthalmoscopy with scleral depression. Posterior-segment biomicroscopy, perimetry, and ultrasonography are also sometimes required. Rhegmatogenous retinal detachment is a diagnosis generally made by clinical examination of the retina alone, but a full history, ocular examination, and sometimes selected ancillary tests are also important parts of the evaluation (Figure 4–1). The symptoms of retinal detachment include fl ashes of light, new floaters, visual Field defect, decreased visual acuity, metamorphopsia, and rarely, defective color vision. The perception of light fl ashes, or photopsia, is due to the production of phosphenes by pathophysiologic stimulation of the retina. The retina is activated by light but is also capable of responding to mechanical disturbances. In fact, the most common cause of light fl ashes is posterior vitreous detachment. As the vitreous separates from the retinal surface, the retina is disturbed mechanically, stimulating a sensation of light. This perception is more marked if there are focal vitreoretinal adhesions. Generally, vitreous separation is benign and may almost be regarded as normal in the senescent eye. In approximately 12% of symptomatic posterior vitreous detachments, however, a careful search of the periphery reveals a tear of the retina. If the fl ashes are associated with floaters, it is wise to assume that a retinal tear exists, until proved otherwise. These symptoms demand a prompt and careful examination of the periphery with binocular indirect ophthalmoscopy and scleral indentation. The patient’s localization of the photopsia is of little value in predicting the location of the vitreoretinal pathology. If no breaks are evident in the first examination after symptomatic vitreous detachment, they rarely appear at a later date. If there is no associated hemorrhage or other pathologic condition, the patient needs counseling only. However, if pigment or blood is detected in the vitreous, a follow-up examination is often required. It is prudent to forewarn patients about the symptoms of retinal detachment. Flashes alone or floaters alone are less significant than if they occur together, in which case they are more likely to be associated with a retinal break.


Author(s):  
Daniel A. Brinton ◽  
Charles P. Wilkinson

Retinal detachment does not result from a single, specific disease; rather, numerous disease processes can result in the presence of subretinal fluid. The three general categories of retinal detachments are termed rhegmatogenous, exudative, and tractional. Rhegmatogenous detachments are sometimes referred to as primary detachments, while both exudative and tractional detachments are called secondary or nonrhegmatogenous detachments. The three types of retinal detachments are not mutually exclusive. For example, detachments associated with proliferative vitreoretinopathy or proliferative diabetic retinopathy may exhibit both rhegmatogenous and tractional features. However, excluding the section on differential diagnosis in Chapter 5, the scope of this book is limited to rhegmatogenous retinal detachments. Accordingly, throughout the book, the term retinal detachment refers to the rhegmatogenous type, unless another type is specifically mentioned. Rhegmatogenous detachments (from the Greek rhegma, meaning rent, rupture, or fissure) are the most common form of retinal detachment. They are caused by a break in the retina through which fluid passes from the vitreous cavity into the subretinal space. The responsible break(s) can be identified preoperatively in more than 90% of cases, but occasionally the presence of a minute, unseen break must be assumed. Exudative detachments, also called serous detachments, are due to an associated problem that produces subretinal fluid without a retinal break. This underlying problem usually involves the choroid as a tumor or an inflammatory disorder. Tractional detachments occur when pathologic vitreoretinal adhesions or membranes mechanically pull the retina away from the pigment epithelium without a retinal break. The most common causes include proliferative diabetic retinopathy, cicatricial retinopathy of prematurity, proliferative sickle retinopathy, and penetrating trauma. Retinal breaks may subsequently develop, resulting in a combined tractional and rhegmatogenous detachment. The essential requirements for a rhegmatogenous retinal detachment include a retinal break and low-viscosity vitreous liquids capable of passing through the break into the subretinal space. Vitreous changes usually precede development of important defects in the retina. The usual pathologic sequence causing retinal detachment is vitreous liquefaction followed by a posterior vitreous detachment (PVD) that causes traction at the site of significant vitreoretinal adhesion with a subsequent retinal tear. Fluids from the vitreous cavity then pass through the tear into the subretinal space (Figure 2–1), augmented by currents within the vitreous cavity caused by rotary eye movements. Although a total PVD is usually seen, many detachments occur with partial vitreous detachment, and evidence of posterior vitreous detachment may not be seen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josef Guber ◽  
Celine Rusch ◽  
Ivo Guber ◽  
Hendrik P. N. Scholl ◽  
Christophe Valmaggia

AbstractTo evaluate the indications and outcomes of perfluoropropane (C3F8) gas injection for symptomatic vitreomacular traction (VMT). A retrospective analysis of eyes with VMT treated with 0.3 mL of C3F8 gas was performed. Patients were not asked to posture after gas injection. In phakic patients, cataract surgery was performed simultaneously. Patients were examined after one week and one month postoperatively. Twenty-nine consecutive eyes of 26 patients with symptomatic VMT who underwent pneumatic vitreolysis were included. A complete posterior vitreous detachment was achieved in 18 eyes (62.1%) after a single gas injection at the final visit. The rate of posterior vitreous detachment was reduced significantly with the presence of epiretinal membrane (ERM) (p = 0.003). Three eyes formed a macular hole (MH) postoperatively and another eye developed a retinal detachment. Mean visual acuity increased significantly after one month (p < 0.008). Pneumatic vitreolysis is a viable option for treating VMT with few adverse events. Patient with concomitant ERM had a significantly lower success rate.


Ophthalmology ◽  
2018 ◽  
Vol 125 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Nicolas A. Yannuzzi ◽  
Jonathan S. Chang ◽  
Gary C. Brown ◽  
William E. Smiddy

Ophthalmology ◽  
1995 ◽  
Vol 102 (4) ◽  
pp. 527 ◽  
Author(s):  
Taiichi Hikichi ◽  
Clement L. Trempe ◽  
Charles L. Schepens

Sign in / Sign up

Export Citation Format

Share Document