scholarly journals Special Issue (Earthquake Hazards in Snow Season). Characteristic Features of Earthquake Disasters in Winter Caused by the 1993 Kushiro-oki Earthquake.

1999 ◽  
Vol 15 (2) ◽  
pp. 134-139
Author(s):  
Shinichi Minami ◽  
Makoto Tomatsu
2018 ◽  
Vol 193 ◽  
pp. 01001
Author(s):  
Friedrich Gönnenwein

Fission phenomena are surveyed where fragment properties are catching the eye. Beyond the Liquid Drop the relevant properties of fragments are shell effects and nuclear pairing. Shell effects influence on mass, charge, stability and deformability of fragments. Most often only the stabilizing effects of shells are discussed and the equally frequent destabilizing effects are not mentioned. For the present purpose the terms shells and anti-shells are used in case of stabilizing and destabilizing effects, respectively. Fragment shells and anti-shells lead to fission modes with characteristic properties. A special issue is where in the course of fission these modes assume their characteristic features. Surprisingly fragment angular distributions in above- and sub-barrier fission help elucidating this question. The discussion is focussed on fission in the standard actinides.


2021 ◽  
Vol 1 (2) ◽  
pp. 33-35
Author(s):  
Zhongtai He ◽  
Dun Wang ◽  
Lihua Fang ◽  
Zhikun Ren ◽  
Xiwei Xu

2019 ◽  
Vol 9 (21) ◽  
pp. 4493 ◽  
Author(s):  
David Quesada ◽  
Maykel Cruz-Monteagudo ◽  
Terace Fletcher ◽  
Aliuska Duardo-Sanchez ◽  
Humbert González-Díaz

Combining complex networks analysis methods with machine learning (ML) algorithms have become a very useful strategy for the study of complex systems in applied sciences. Noteworthy, the structure and function of such systems can be studied and represented through the above-mentioned approaches, which range from small chemical compounds, proteins, metabolic pathways, and other molecular systems, to neuronal synapsis in the brain’s cortex, ecosystems, the internet, markets, social networks, program’s development in education, social learning, etc. On the other hand, ML algorithms are useful to study large datasets with characteristic features of complex systems. In this context, we decided to launch one special issue focused on the benefits of using ML and complex network analysis (in combination or separately) to study complex systems in applied sciences. The topic of the issue is: Complex Networks and Machine Learning in Applied Sciences. Contributions to this special issue are highlighted below. The present issue is also linked to conference series, MOL2NET International Conference on Multidisciplinary Sciences, ISSN: 2624-5078, MDPI AG, SciForum, Basel, Switzerland. At the same time, the special issue and the conference are hosts for the works published by students/tutors of the USEDAT: USA–Europe Data Analysis Training Worldwide Program.


Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


Author(s):  
T. Kaneyama ◽  
M. Naruse ◽  
Y. Ishida ◽  
M. Kersker

In the field of materials science, the importance of the ultrahigh resolution analytical electron microscope (UHRAEM) is increasing. A new UHRAEM which provides a resolution of better than 0.2 nm and allows analysis of a few nm areas has been developed. [Fig. 1 shows the external view] The followings are some characteristic features of the UHRAEM.Objective lens (OL)Two types of OL polepieces (URP for ±10' specimen tilt and ARP for ±30' tilt) have been developed. The optical constants shown in the table on the next page are figures calculated by the finite element method. However, Cs was experimentally confirmed by two methods (namely, Beam Tilt method and Krivanek method) as 0.45 ∼ 0.50 mm for URP and as 0.9 ∼ 1.0 mm for ARP, respectively. Fig. 2 shows an optical diffractogram obtained from a micrograph of amorphous carbon with URP under the Scherzer defocus condition. It demonstrates a resolution of 0.19 nm and a Cs smaller than 0.5 mm.


Sign in / Sign up

Export Citation Format

Share Document