scholarly journals Hybridizing Bat Algorithm with Modified Pitch-Adjustment Operator for Numerical Optimization Problems

Author(s):  
Waheed Ali H. M. Ghanem ◽  
Aman Jantan
2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo

A novel robust hybrid metaheuristic optimization approach, which can be considered as an improvement of the recently developed bat algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of pitch adjustment operation in HS serving as a mutation operator during the process of the bat updating with the aim of speeding up convergence, thus making the approach more feasible for a wider range of real-world applications. The detailed implementation procedure for this improved metaheuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most situations, the performance of this hybrid metaheuristic method (HS/BA) is superior to, or at least highly competitive with, the standard BA and other population-based optimization methods, such as ACO, BA, BBO, DE, ES, GA, HS, PSO, and SGA. The effect of the HS/BA parameters is also analyzed.


2014 ◽  
Vol 602-605 ◽  
pp. 3585-3588
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

To efficiently enhance the global search and local search of Differential Evolution algorithm ( DE), A modified differential evolution algorithm (MDE) is proposed in this paper. The MDE and the DE are different in two aspects. The first is the MDE Algorithm use a strategy of Pitch adjustment instead of original mutation operation, this can enhance the convergence of the MDE, the second is integrate the opposed-learning operation in the crossover operation to prevent DE from being trapped into local optimum. Four test functions are adopted to make comparison with original DE, the MDE has demonstrated stronger velocity of convergence and precision of optimization than differential DE algorithm and PSO.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 135 ◽  
Author(s):  
Yechuang Wang ◽  
Penghong Wang ◽  
Jiangjiang Zhang ◽  
Zhihua Cui ◽  
Xingjuan Cai ◽  
...  

A bat algorithm (BA) is a heuristic algorithm that operates by imitating the echolocation behavior of bats to perform global optimization. The BA is widely used in various optimization problems because of its excellent performance. In the bat algorithm, the global search capability is determined by the parameter loudness and frequency. However, experiments show that each operator in the algorithm can only improve the performance of the algorithm at a certain time. In this paper, a novel bat algorithm with multiple strategies coupling (mixBA) is proposed to solve this problem. To prove the effectiveness of the algorithm, we compared it with CEC2013 benchmarks test suits. Furthermore, the Wilcoxon and Friedman tests were conducted to distinguish the differences between it and other algorithms. The results prove that the proposed algorithm is significantly superior to others on the majority of benchmark functions.


2011 ◽  
Vol 148-149 ◽  
pp. 134-137 ◽  
Author(s):  
Pei Wei Tsai ◽  
Jeng Shyang Pan ◽  
Bin Yih Liao ◽  
Ming Jer Tsai ◽  
Vaci Istanda

Inspired by Bat Algorithm, a novel algorithm, which is called Evolved Bat Algorithm (EBA), for solving the numerical optimization problem is proposed based on the framework of the original bat algorithm. By reanalyzing the behavior of bats and considering the general characteristics of whole species of bat, we redefine the corresponding operation to the bats’ behaviors. EBA is a new method in the branch of swarm intelligence for solving numerical optimization problems. In order to analyze the improvement on the accuracy of finding the near best solution and the reduction in the computational cost, three well-known and commonly used test functions in the field of swarm intelligence for testing the accuracy and the performance of the algorithm, are used in the experiments. The experimental results indicate that our proposed method improves at least 99.42% on the accuracy of finding the near best solution and reduces 6.07% in average, simultaneously, on the computational time than the original bat algorithm.


2014 ◽  
Vol 602-605 ◽  
pp. 3589-3592
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

This paper proposes a new effective MHS algorithm to solve numerical optimization problems. The MHS algorithm first adopt a novel self-studying strategy, which makes it easy balance the global search ability and local development ability, prevent the MHS algorithm trapped into local optimal value. besides, the harmony memory consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth distance (bw) is changed with function values dynamically, it can effectively improve the convergence speed and precision of the algorithm Based on five test functions , experiments results obtained by the MHS algorithm are better than those obtained using HS, IHS and NGHS algorithm in the literature.


2021 ◽  
Vol 11 (3) ◽  
pp. 1286 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Om P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

One of the most powerful tools for solving optimization problems is optimization algorithms (inspired by nature) based on populations. These algorithms provide a solution to a problem by randomly searching in the search space. The design’s central idea is derived from various natural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA) is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the population comprises weights that are connected by unique springs. The mathematical modeling of the proposed algorithm is presented to be used to achieve solutions to optimization problems. The results were thoroughly validated in different unimodal and multimodal functions; additionally, the BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm, binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary particle swarm optimization, and binary genetic algorithm. The results show the superiority of the BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.


Sign in / Sign up

Export Citation Format

Share Document