scholarly journals THIRD ORDER HANKEL DETERMINANT FOR CERTAIN UNIVALENT FUNCTIONS

2015 ◽  
Vol 52 (6) ◽  
pp. 1139-1148 ◽  
Author(s):  
DEEPAK BANSAL ◽  
SUDHANANDA MAHARANA ◽  
JUGAL KISHORE PRAJAPAT
2021 ◽  
Vol 71 (3) ◽  
pp. 649-654
Author(s):  
Milutin Obradović ◽  
Nikola Tuneski

Abstract In this paper we give the upper bounds of the Hankel determinants of the second and third order for the class 𝓢 of univalent functions in the unit disc.


Author(s):  
Young Jae Sim ◽  
Adam Lecko ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${{\mathcal {S}}}$$ S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . We give sharp bounds for the modulus of the second Hankel determinant $$ H_2(2)(f)=a_2a_4-a_3^2$$ H 2 ( 2 ) ( f ) = a 2 a 4 - a 3 2 for the subclass $$ {\mathcal F_{O}}(\lambda ,\beta )$$ F O ( λ , β ) of strongly Ozaki close-to-convex functions, where $$1/2\le \lambda \le 1$$ 1 / 2 ≤ λ ≤ 1 , and $$0<\beta \le 1$$ 0 < β ≤ 1 . Sharp bounds are also given for $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | , where $$f^{-1}$$ f - 1 is the inverse function of f. The results settle an invariance property of $$|H_2(2)(f)|$$ | H 2 ( 2 ) ( f ) | and $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | for strongly convex functions.


2021 ◽  
Vol 33 (4) ◽  
pp. 973-986
Author(s):  
Young Jae Sim ◽  
Paweł Zaprawa

Abstract In recent years, the problem of estimating Hankel determinants has attracted the attention of many mathematicians. Their research have been focused mainly on deriving the bounds of H 2 , 2 {H_{2,2}} or H 3 , 1 {H_{3,1}} over different subclasses of 𝒮 {\mathcal{S}} . Only in a few papers third Hankel determinants for non-univalent functions were considered. In this paper, we consider two classes of analytic functions with real coefficients. The first one is the class 𝒯 {\mathcal{T}} of typically real functions. The second object of our interest is 𝒦 ℝ ⁢ ( i ) {\mathcal{K}_{\mathbb{R}}(i)} , the class of functions with real coefficients which are convex in the direction of the imaginary axis. In both classes, we find lower and upper bounds of the third Hankel determinant. The results are sharp.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950017
Author(s):  
H. Orhan ◽  
N. Magesh ◽  
V. K. Balaji

In this work, we obtain an upper bound estimate for the second Hankel determinant of a subclass [Formula: see text] of analytic bi-univalent function class [Formula: see text] which is associated with Chebyshev polynomials in the open unit disk.


2017 ◽  
Vol 25 (3) ◽  
pp. 199-214
Author(s):  
S.P. Vijayalakshmi ◽  
T.V. Sudharsan ◽  
Daniel Breaz ◽  
K.G. Subramanian

Abstract Let A be the class of analytic functions f(z) in the unit disc ∆ = {z ∈ C : |z| < 1g with the Taylor series expansion about the origin given by f(z) = z+ ∑n=2∞ anzn, z ∈∆ : The focus of this paper is on deriving upper bounds for the third order Hankel determinant H3(1) for two new subclasses of A.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 503-516 ◽  
Author(s):  
H.M. Srivastava ◽  
Şahsene Altınkaya ◽  
Sibel Yalçın

In this paper, we discuss the various properties of a newly-constructed subclass of the class of normalized bi-univalent functions in the open unit disk, which is defined here by using a symmetric basic (or q-) derivative operator. Moreover, for functions belonging to this new basic (or q-) class of normalized biunivalent functions, we investigate the estimates and inequalities involving the second Hankel determinant.


2012 ◽  
Vol 43 (3) ◽  
pp. 445-453
Author(s):  
Ma'moun Harayzeh Al-Abbadi ◽  
Maslina Darus

The authors in \cite{mam1} have recently introduced a new generalised derivatives operator $ \mu_{\lambda _1 ,\lambda _2 }^{n,m},$ which generalised many well-known operators studied earlier by many different authors. By making use of the generalised derivative operator $\mu_{\lambda_1 ,\lambda _2 }^{n,m}$, the authors derive the class of function denoted by $ \mathcal{H}_{\lambda _1 ,\lambda _2 }^{n,m}$, which contain normalised analytic univalent functions $f$ defined on the open unit disc $U=\left\{{z\,\in\mathbb{C}:\,\left| z \right|\,<\,1} \right\}$ and satisfy \begin{equation*}{\mathop{\rm Re}\nolimits} \left( {\mu _{\lambda _1 ,\lambda _2 }^{n,m} f(z)} \right)^\prime > 0,\,\,\,\,\,\,\,\,\,(z \in U).\end{equation*}This paper focuses on attaining sharp upper bound for the functional $\left| {a_2 a_4 - a_3^2 } \right|$ for functions $f(z)=z+ \sum\limits_{k = 2}^\infty {a_k \,z^k }$ belonging to the class $\mathcal{H}_{\lambda _1 ,\lambda _2 }^{n,m}$.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 404 ◽  
Author(s):  
Hai-Yan Zhang ◽  
Rekha Srivastava ◽  
Huo Tang

Let S s * be the class of normalized functions f defined in the open unit disk D = { z : | z | < 1 } such that the quantity z f ′ ( z ) f ( z ) lies in an eight-shaped region in the right-half plane and satisfying the condition z f ′ ( z ) f ( z ) ≺ 1 + sin z ( z ∈ D ) . In this paper, we aim to investigate the third-order Hankel determinant H 3 ( 1 ) and Toeplitz determinant T 3 ( 2 ) for this function class S s * associated with sine function and obtain the upper bounds of the determinants H 3 ( 1 ) and T 3 ( 2 ) .


Sign in / Sign up

Export Citation Format

Share Document