scholarly journals Third-Order Hankel and Toeplitz Determinants for Starlike Functions Connected with the Sine Function

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 404 ◽  
Author(s):  
Hai-Yan Zhang ◽  
Rekha Srivastava ◽  
Huo Tang

Let S s * be the class of normalized functions f defined in the open unit disk D = { z : | z | < 1 } such that the quantity z f ′ ( z ) f ( z ) lies in an eight-shaped region in the right-half plane and satisfying the condition z f ′ ( z ) f ( z ) ≺ 1 + sin z ( z ∈ D ) . In this paper, we aim to investigate the third-order Hankel determinant H 3 ( 1 ) and Toeplitz determinant T 3 ( 2 ) for this function class S s * associated with sine function and obtain the upper bounds of the determinants H 3 ( 1 ) and T 3 ( 2 ) .

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 501 ◽  
Author(s):  
Hai-Yan Zhang ◽  
Huo Tang ◽  
Xiao-Meng Niu

Let S l * denote the class of analytic functions f in the open unit disk D = { z : | z | < 1 } normalized by f ( 0 ) = f ′ ( 0 ) − 1 = 0 , which is subordinate to exponential function, z f ′ ( z ) f ( z ) ≺ e z ( z ∈ D ) . In this paper, we aim to investigate the third-order Hankel determinant H 3 ( 1 ) for this function class S l * associated with exponential function and obtain the upper bound of the determinant H 3 ( 1 ) . Meanwhile, we give two examples to illustrate the results obtained.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 848
Author(s):  
Hari M. Srivastava ◽  
Qazi Zahoor Ahmad ◽  
Maslina Darus ◽  
Nazar Khan ◽  
Bilal Khan ◽  
...  

In this paper, our aim is to define a new subclass of close-to-convex functions in the open unit disk U that are related with the right half of the lemniscate of Bernoulli. For this function class, we obtain the upper bound of the third Hankel determinant. Various other related results are also considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hai-Yan Zhang ◽  
Huo Tang

In this article, we aim to study the upper bounds of the fourth Toeplitz determinant T 4 2 for the function class S s ∗ , which are connected with the sine function.


Author(s):  
K.D. Vamshee ◽  
D. Shalini

The objective of this paper is to obtain an upper bound (not sharp) to the third order Hankel determinant for certain subclass of multivalent (p-valent) analytic functions, defined in the open unit disc E. Using the Toeplitz determinants, we may estimate the Hankel determinant of third kind for the normalized multivalent analytic functions belongng to this subclass. But, using the technique adopted by Zaprawa 1, i. e., grouping the suitable terms in order to apply Lemmas due to Hayami 2, Livingston 3 and Pommerenke 4, we observe that, the bound estimated by the method adopted by Zaprawa is more refined than using upon applying the Toeplitz determinants.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 181 ◽  
Author(s):  
Hari Srivastava ◽  
Qazi Ahmad ◽  
Nasir Khan ◽  
Nazar Khan ◽  
Bilal Khan

By using a certain general conic domain as well as the quantum (or q-) calculus, here we define and investigate a new subclass of normalized analytic and starlike functions in the open unit disk U . In particular, we find the Hankel determinant and the Toeplitz matrices for this newly-defined class of analytic q-starlike functions. We also highlight some known consequences of our main results.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hai-Yan Zhang ◽  
Huo Tang

In this paper, upper bounds for the fourth-order Hankel determinant H 4 1 for the function class S s ∗ associated with the sine function are given.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1043 ◽  
Author(s):  
Muhammad Shafiq ◽  
Hari M. Srivastava ◽  
Nazar Khan ◽  
Qazi Zahoor Ahmad ◽  
Maslina Darus ◽  
...  

In this paper, we use q-derivative operator to define a new class of q-starlike functions associated with k-Fibonacci numbers. This newly defined class is a subclass of class A of normalized analytic functions, where class A is invariant (or symmetric) under rotations. For this function class we obtain an upper bound of the third Hankel determinant.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1274
Author(s):  
Anna Dobosz

Sharp lower and upper bounds of the second- and third-order Hermitian Toeplitz determinants for the class of α-convex functions were found. The symmetry properties of the arithmetic mean underlying the definition of α-convexity and the symmetry properties of Hermitian matrices were used.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Muhammad Ghaffar Khan ◽  
Bakhtiar Ahmad ◽  
Gangadharan Muraugusundaramoorthy ◽  
Ronnason Chinram ◽  
Wali Khan Mashwani

The main focus of this investigation is the applications of modified sigmoid functions. Due to its various uses in physics, engineering, and computer science, we discuss several geometric properties like necessary and sufficient conditions in the form of convolutions for functions to be in the special class S S G ∗ earlier introduced by Goel and Kumar and obtaining third-order Hankel determinant for this class using modified sigmoid functions. Also, the third-order Hankel determinant for 2- and 3-fold symmetric functions of this class is evaluated.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 721 ◽  
Author(s):  
Oh Sang Kwon ◽  
Young Jae Sim

Let SR * be the class of starlike functions with real coefficients, i.e., the class of analytic functions f which satisfy the condition f ( 0 ) = 0 = f ′ ( 0 ) − 1 , Re { z f ′ ( z ) / f ( z ) } > 0 , for z ∈ D : = { z ∈ C : | z | < 1 } and a n : = f ( n ) ( 0 ) / n ! is real for all n ∈ N . In the present paper, it is obtained that the sharp inequalities − 4 / 9 ≤ H 3 , 1 ( f ) ≤ 3 / 9 hold for f ∈ SR * , where H 3 , 1 ( f ) is the third Hankel determinant of order 3 defined by H 3 , 1 ( f ) = a 3 ( a 2 a 4 − a 3 2 ) − a 4 ( a 4 − a 2 a 3 ) + a 5 ( a 3 − a 2 2 ) .


Sign in / Sign up

Export Citation Format

Share Document