scholarly journals The Dual Nature of Metallothioneins in the Metabolism of Heavy Metals and Reactive Oxygen Species in Aquatic Organisms: Implications of Use as a Biomarker of Heavy-Metal Effects in Field Investigations

2008 ◽  
Vol 1 ◽  
pp. BCI.S1007 ◽  
Author(s):  
F. Gagné ◽  
C. André ◽  
C. Blaise

The purpose of this study was to examine the function of metallothioneins (MT) in respect to the mobilization of heavy metals and superoxide anion (O2–) scavenging in aquatic organisms. Using an O2– generating system, liberation of free zinc from native and zinc MT (Zn-MT) was measured in vitro. Addition of the O2– generating system and H2O2 readily increased the di- and trimeric forms of MT as determined by gel electrophoresis analysis. To determine whether the proportion of oxidized MT could change in contaminated environments, metal-contaminated Mya arenaria clams were collected from a harbour in the St. Lawrence Estuary. The levels of labile zinc, superoxide dismutase (O2– scavenging enzyme), lipid peroxidation (LPO) and the oxidized/metallic form of MT were determined in the digestive gland. The results revealed that the induction of total MT levels was the result of increased oxidized MT at the expense of the reduced or metallic form of MT. Both superoxide dismutase (SOD) and labile zinc (Zn) levels were induced and they were significantly correlated with the oxidized form of MT, but not the metallic form, in feral clam populations. We concluded that the level of total MT was related to Zn mobility and the activation of antioxidant mechanisms such as SOD, and corresponded to the levels of oxidized MT. The metallic form of MT was negatively associated with Zn mobility but positively associated with oxidative damage such as LPO. Overall, the oxidized fraction of MT appeared to be more closely related to detoxification, while the metallic form of MT was associated with metal mobility and toxicity via oxidative damage. The protective effect of MT during heavy-metal contamination depends on the availability of metals and on its capacity to sequester reactive oxygen species.

2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


2010 ◽  
Vol 110 (6) ◽  
pp. 633-637 ◽  
Author(s):  
Chartchalerm Isarankura-Na-Ayudhya ◽  
Sakda Yainoy ◽  
Tanawut Tantimongcolwat ◽  
Leif Bülow ◽  
Virapong Prachayasittikul

2021 ◽  
Vol 86 (7) ◽  
pp. 878-886
Author(s):  
Vitaly D. Samuilov ◽  
Dmitry B. Kiselevsky ◽  
Elena V. Dzyubinskaya ◽  
Olga Yu. Frolova

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Yoo-Hun Noh ◽  
Byung-Ju Jeon ◽  
Seungah Lee ◽  
Jaeho Myeong ◽  
Ga-Young Kim ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 83
Author(s):  
Ahmad Fuadi ◽  
Yoyon Arif ◽  
Yudi Purnomo

Hiperglikemia pada Diabetes Melitus (DM) meningkatkan produksi Reactive Oxygen Species (ROS) dan berperan terhadap risiko komplikasi nefropati diabetik. Daun gedi merah (Abelmoschus manihot (L.) Medik) berkhasiat sebagai antidiabetik dan antioksidan tetapi penelitian ekstrak etanol daun gedi merah (EEDGM) untuk mencegah nefropati diabetik belum banyak dilaporkan. Penelitian ini bertujuan untuk mengetahui efek EEDGM terhadap kadar SOD dan MDA ginjal tikus model DM.Metode: Tikus Sprague dawley jantan usia 4-6 minggu dikelompokan menjadi 2 kelompok kontrol dan 3 kelompok perlakuan (n=25 ekor). Tikus DM dibuat dengan diet tinggi lemak-fruktosa (DTLF) dan streptozotocin (STZ) 25 mg/kgBB i.p multiple dose. Ekstrak etanol daun gedi merah (EEDGM) diberikan per oral selama 4 minggu. Kadar SOD dan MDA ginjal diukur menggunakan SOD rat kit dan MDA rat kit. Hasil dianalisa dengan One Way Anova dilanjutkan dengan uji BNT (p<0,05).Hasil: Pemberian EEDGM dosis 800 mg/kgBB menghambat penurunan kadar SOD jaringan ginjal dengan persentase sekitar 60% dibandingkan KDM (p<0,05). Pemberian EEDGM dosis 400 mg/kgBB menghambat peningkatan kadar MDA jaringan ginjal dengan persentase sekitar 20% dibandingkan KDM (p<0,05). Induksi DTLF dan STZ menurunkan kadar SOD jaringan ginjal dengan persentase sekitar 40% dan meningkatkan kadar MDA jaringan ginjal dengan persentase sekitar 30%.Kesimpulan: Pemberian EEDGM dapat menghambat penurunan kadar SOD dan peningkatan kadar MDA jaringan ginjal tikus model DM.


Sign in / Sign up

Export Citation Format

Share Document