scholarly journals From “Directed Differentiation” to “Neuronal Induction”: Modeling Neuropsychiatric Disease

2015 ◽  
Vol 10s1 ◽  
pp. BMI.S20066 ◽  
Author(s):  
Seok-Man Ho ◽  
Aaron Topol ◽  
Kristen J. Brennand

Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsychiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, “directed differentiation” and “neuronal induction,” by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.

2020 ◽  
Vol 21 (2) ◽  
pp. 482 ◽  
Author(s):  
Bruno Sterlini ◽  
Floriana Fruscione ◽  
Simona Baldassari ◽  
Fabio Benfenati ◽  
Federico Zara ◽  
...  

The study of the pathomechanisms by which gene mutations lead to neurological diseases has benefit from several cellular and animal models. Recently, induced Pluripotent Stem Cell (iPSC) technologies have made possible the access to human neurons to study nervous system disease-related mechanisms, and are at the forefront of the research into neurological diseases. In this review, we will focalize upon genetic epilepsy, and summarize the most recent studies in which iPSC-based technologies were used to gain insight on the molecular bases of epilepsies. Moreover, we discuss the latest advancements in epilepsy cell modeling. At the two dimensional (2D) level, single-cell models of iPSC-derived neurons lead to a mature neuronal phenotype, and now allow a reliable investigation of synaptic transmission and plasticity. In addition, functional characterization of cerebral organoids enlightens neuronal network dynamics in a three-dimensional (3D) structure. Finally, we discuss the use of iPSCs as the cutting-edge technology for cell therapy in epilepsy.


2019 ◽  
Author(s):  
Martin Becker ◽  
Francesca Mastropasqua ◽  
Jan Philipp Reising ◽  
Simon Maier ◽  
Mai-Lan Ho ◽  
...  

SummaryCASK-related disorders are a genetically defined group of neurodevelopmental syndromes. There is limited information about the effects of CASK mutations in human neurons. Therefore, we sought to delineate CASK mutation consequences and neuronal level effects using induced pluripotent stem cell-derived neurons from two mutation carriers; one male diagnosed with ASD and a female with MICPCH. We show a reduction of the CASK protein in maturing neurons from the mutation carriers, which leads to significant downregulation of gene sets involved in presynaptic development and CASK protein interactors. Furthermore, CASK-deficient neurons showed decreased inhibitory presynapse size as indicated by VGAT staining, which may alter the excitatory-inhibitory (E/I) balance in developing neural circuitries. Using in vivo magnetic resonance spectroscopy quantification of GABA in the male mutation carrier, we further highlight the possibility to validate in vitro cellular data in brain. Our data shows that future pharmacological and clinical studies on targeting presynapses and E/I imbalance could lead to specific treatments for CASK-related disorders.HighlightsModelling of CASK-related disorders using iPSC-derived human neuronal cellsCASK mutations cause dysregulation of its protein interactor partnersReduced CASK levels primarily affect inhibitory presynapse developmentIn vitro GABAergic phenotype predicts in vivo neurotransmitter levels


2021 ◽  
Author(s):  
Sophie Girardin ◽  
Blandine Clément ◽  
Stephan J. Ihle ◽  
Sean Weaver ◽  
Jana B. Petr ◽  
...  

Bottom-up neuroscience, which consists of building and studying controlled networks of neurons in vitro, is a promising method to investigate information processing at the neuronal level. However, in vitro studies tend to use cells of animal origin rather than human neurons, leading to conclusions that might not be generalizable to humans and limiting the possibilities for relevant studies on neurological disorders. Here we present a method to build arrays of topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons. The circuits consist of 4 to 50 neurons with mostly unidirectional connections, confined by microfabricated polydimethylsiloxane (PDMS) membranes. Such circuits were characterized using optical imaging and microelectrode arrays (MEAs). Electrophysiology recordings were performed on circuits of human iPSC-derived neurons for at least 4.5 months. We believe that the capacity to build small and controlled circuits of human iPSC-derived neurons holds great promise to better understand the fundamental principles of information processing and storing in the brain.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Aditya Mithal ◽  
Amalia Capilla ◽  
Dar Heinze ◽  
Andrew Berical ◽  
Carlos Villacorta-Martin ◽  
...  

AbstractEfficient generation of human induced pluripotent stem cell (hiPSC)-derived human intestinal organoids (HIOs) would facilitate the development of in vitro models for a variety of diseases that affect the gastrointestinal tract, such as inflammatory bowel disease or Cystic Fibrosis. Here, we report a directed differentiation protocol for the generation of mesenchyme-free HIOs that can be primed towards more colonic or proximal intestinal lineages in serum-free defined conditions. Using a CDX2eGFP iPSC knock-in reporter line to track the emergence of hindgut progenitors, we follow the kinetics of CDX2 expression throughout directed differentiation, enabling the purification of intestinal progenitors and robust generation of mesenchyme-free organoids expressing characteristic markers of small intestinal or colonic epithelium. We employ HIOs generated in this way to measure CFTR function using cystic fibrosis patient-derived iPSC lines before and after correction of the CFTR mutation, demonstrating their future potential for disease modeling and therapeutic screening applications.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


Sign in / Sign up

Export Citation Format

Share Document