Geochemistry and tectonic setting of the late Precambrian Folly River Formation, Cobequid Highlands, Avalon Terrane, Nova Scotia: a continental rift within a volcanic-arc environment

10.4138/1679 ◽  
1989 ◽  
Vol 25 (2) ◽  
Author(s):  
Georgia Pe-Piper ◽  
J. Brendan Murphy
1993 ◽  
Vol 30 (6) ◽  
pp. 1147-1154 ◽  
Author(s):  
Sandra M. Barr

Late Precambrian volcanic–sedimentary belts in the Mira (Avalon) terrane of southeastern Cape Breton Island display differences in rock types, petrochemistry, and age, showing that they did not form contemporaneously above a single northwest-dipping subduction zone, as proposed in earlier models. The oldest rocks are 680 Ma mafic and felsic flows and tuffs, and abundant, mainly tuffaceous, sedimentary rocks in the Stirling belt. They are interpreted to have formed in a trough within or peripheral to a volcanic-arc complex. Northwest of the Stirling belt, the East Bay Hills, Coxheath Hills, and Sporting Mountain belts consist of ca. 620 Ma mafic to felsic subaerial pyroclastic rocks and flows and contemporaneous dioritic to granitic plutons. Both volcanic and plutonic rocks are calc-alkalic to high-K calc-alkalic suites, formed in a continental margin volcanic arc. A correlative 620 Ma plutonic suite intruded the western margin of the Stirling belt, suggesting that subduction may have been toward the present southeast. The ca. 575 Ma Coastal belt, located southeast of the Stirling belt, is significantly younger than the other belts and appears to represent a less evolved calc-alkalic to low-K continental margin volcanic-arc and intra-arc basin formed above a northwest-dipping subduction zone. These various volcanic–sedimentary belts were juxtaposed by lateral movements along major faults in the late Precambrian to form this part of the Avalon composite terrane. Subduction-related, calc-alkalic magmatism at ca. 620 Ma was apparently widespread throughout the Avalon terrane of the northern Appalachian Orogen. However, ca. 680 Ma magmatism like that in the Stirling belt has been documented elsewhere only in the Connaigre Bay Group of Newfoundland. Circa 575 Ma and younger subduction-generated igneous activity like that in the Coastal belt has been recognized in southern New Brunswick, but alkaline magmas were forming in extensional regimes in other areas of the Avalon terrane at that time.


1988 ◽  
Vol 25 (4) ◽  
pp. 473-485 ◽  
Author(s):  
J. Brendan Murphy

Five suites of alkalic basalt ranging in age from Late Precambrian to Late Devonian are found in the Antigonish Highlands of Nova Scotia. In contrast, on neighbouring Cape Breton Island, alkalic basalts are rare even in suites that are contemporaneous with those in the Antigonish Highlands. Late Precambrian alkalic basalts in the Antigonish Highlands are genetically associated with calc-alkalic rocks and are probably subduction related, whereas the younger suites are continental, rift related, and within plate. Major and compatible trace-element abundances can be explained by crystal fractionation of olivine ± clinopyroxene ± orthopyroxene ± spinel ± garnet. However, incompatible trace-element concentrations are strongly influenced by mantle metasomatism that occurred prior to, or synchronously with, the oldest alkalic rocks. The metasomatic event enriched the mantle in Fe, Ti, P, Zr, and light rare-earth elements. The trace-element composition of the younger suites is similar to that of the oldest alkalic rocks and may have been strongly influenced by the Late Precambrian metasomatic event. The anomalously low Nb/Y ratio (generally less than 1 in all suites) and application of phase-equilibria studies indicate that the metasomatic fluid was probably rich in H2O. This fluid may have been derived from dehydration of the subducting slab in Late Precambrian time, resulting in metasomatism of the overlying mantle wedge in the Late Precambrian. It is proposed that the younger suites obtained their fluids by dehydration of the previously metasomatized mantle associated with the generation of local pull-apart basins. Thus, the metasomatic fluid was exotic with respect to the oldest basalts but indigenous with respect to the younger basalts. In the younger basalts, the indigenous fluid was probably focussed at the site of melting by structural events (i.e., rifting). In situations in which the chemistry of mafic magmas is predetermined by earlier metasomatic events, caution is advised in using trace-element criteria to evaluate the tectonic setting.


2021 ◽  
pp. 1-20
Author(s):  
Xiao-Fei Qiu ◽  
Qiong Xu ◽  
Tuo Jiang ◽  
Shan-Song Lu ◽  
Long Zhao

Abstract The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.


2020 ◽  
Vol 83 (1) ◽  
Author(s):  
Emma J. Liu ◽  
Kieran Wood ◽  
Alessandro Aiuppa ◽  
Gaetano Giudice ◽  
Marcello Bitetto ◽  
...  

AbstractThe South Sandwich Volcanic Arc is one of the most remote and enigmatic arcs on Earth. Sporadic observations from rare cloud-free satellite images—and even rarer in situ reports—provide glimpses into a dynamic arc system characterised by persistent gas emissions and frequent eruptive activity. Our understanding of the state of volcanic activity along this arc is incomplete compared to arcs globally. To fill this gap, we present here detailed geological and volcanological observations made during an expedition to the South Sandwich Islands in January 2020. We report the first in situ measurements of gas chemistry, emission rate and carbon isotope composition from along the arc. We show that Mt. Michael on Saunders Island is a persistent source of gas emissions, releasing 145 ± 59 t day−1 SO2 in a plume characterised by a CO2/SO2 molar ratio of 1.8 ± 0.2. Combining this CO2/SO2 ratio with our independent SO2 emission rate measured near simultaneously, we derive a CO2 flux of 179 ± 76 t day−1. Outgassing from low temperature (90–100 °C) fumaroles is pervasive at the active centres of Candlemas and Bellingshausen, with measured gas compositions indicative of interaction between magmatic fluids and hydrothermal systems. Carbon isotope measurements of dilute plume and fumarole gases from along the arc indicate a magmatic δ13C of − 4.5 ± 2.0‰. Interpreted most simply, this result suggests a carbon source dominated by mantle-derived carbon. However, based on a carbon mass balance from sediment core ODP 701, we show that mixing between depleted upper mantle and a subduction component composed of sediment and altered crust is also permissible. We conclude that, although remote, the South Sandwich Volcanic Arc is an ideal tectonic setting in which to explore geochemical processes in a young, developing arc.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 341
Author(s):  
Yalong Li ◽  
Wei Yue ◽  
Xun Yu ◽  
Xiangtong Huang ◽  
Zongquan Yao ◽  
...  

The Bogeda Shan (Mountain) is in southern part of the Central Asian Orogenic Belt (CAOB) and well preserved Paleozoic stratigraphy, making it an ideal region to study the tectonic evolution of the CAOB. However, there is a long-standing debate on the tectonic setting and onset uplift of the Bogeda Shan. In this study, we report detrital zircon U-Pb geochronology and whole-rock geochemistry of the Permian sandstone samples, to decipher the provenance and tectonic evolution of the West Bogeda Shan. The Lower-Middle Permian sandstone is characterized by a dominant zircon peak age at 300–400 Ma, similar to the Carboniferous samples, suggesting their provenance inheritance and from North Tian Shan (NTS) and Yili-Central Tian Shan (YCTS). While the zircon record of the Upper Permian sandstone is characterized by two major age peaks at ca. 335 Ma and ca. 455 Ma, indicating the change of provenance after the Middle Permian and indicating the uplift of Bogeda Shan. The initial uplift of Bogeda Shan was also demonstrated by structural deformations and unconformity occurring at the end of Middle Permian. The bulk elemental geochemistry of sedimentary rocks in the West Bogeda Shan suggests the Lower-Middle Permian is mostly greywacke with mafic source dominance, and tectonic setting changed from the continental rift in the Early Permian to post rift in the Middle Permian. The Upper Permian mainly consists of litharenite and sublitharenite with mafic-intermediate provenances formed in continental island arcs. The combined evidences suggest the initial uplift of the Bogeda Shan occurred in the Late Permian, and three stages of mountain building include the continental rift, post-rift extensional depression, and continental arc from the Early, Middle, to Late Permian, respectively.


Sign in / Sign up

Export Citation Format

Share Document