Genetic diversity among Canadienne, Brown Swiss, Holstein and Jersey cattle based on mitochondrial D-loop sequence variation

2003 ◽  
Vol 83 (1) ◽  
pp. 39-44 ◽  
Author(s):  
C. Hansen ◽  
J. N. B. Shrestha ◽  
R. J. Parker ◽  
G. H. Crow ◽  
P. J. McAlpine ◽  
...  

Polymorphisms creating 36 unique haplotypes were observed with in breeds at 55 sites in the displacement loop (D-loop) region of the mitochondrial DNA (mtDNA) consisting of 814 bp. The majority (56%) of the differences observed were the result of nucleotide substitution events with 19 transitions, 12 transversions, 11 deletions, 12 insertions and 1 inversion. In all cases, the insertions and deletions were of a single nucleotide. Canadienne cattle were found to have 60% unique haplotypes within the population compared to 89% in Brown Swiss, 90% in Holstein and 100% in Jersey cattle, possibly reflecting the narrow genetic base in the Canadienne breed. The degree of sequence divergence in the D-loop region of mtDNA was based on samples from 20 Canadienne, 9 Brown Swiss, 10 Holstein and 10 Jersey cattle and a phylogenetic analysis showed that these cattle (Bos taurus) were not evolutionarily distinct. All four breeds grouped together when a strict consensus tree was generated. Intra-breed variability proved to be high for the Canadienne, Holstein and Jersey breeds (57–73%) but not the Brown Swiss breed (29%). The Canadienne and Brown Swiss (45%), and Brown Swiss and Holstein (43%) showed the lowest degree of inter-breed variability. The greatest variability among the four breeds was between Canadienne and Jersey (80%) cattle. These findings question the validity of phenotypic assessment of genetic diversity, such as Canadienne cattle being described as “Black Jersey”. Key words: Genetic distance, phylogenetic analysis, D-loop sequence, cattle

2021 ◽  
Vol 46 (2) ◽  
pp. 93-105
Author(s):  
S. Suhardi ◽  
P. Summpunn ◽  
S. Wuthisuthimethavee

Kalang (KBuf), Krayan (KrBuf), and Thale Noi buffaloes (TBuf) are swamp buffalo genetic resources in Indonesia and Thailand. The maternally inherited mitochondrial DNA (mtDNA), particularly D-loop region is an important material for phylogenetic inference and analyzing genetic diversity. Therefore, the objectives of the present study were to evaluate genetic diversity and to reconstruct the phylogenetic tree within buffalo breeds in Kalimantan, Indonesia, and Phatthalung, Thailand using mtDNA D-loop sequences. A total of one hundred forty buffaloes (70 males and 70 females) were observed including 40 buffaloes from North (NK), 40 from East (EK), and 40 from South Kalimantan (SK) provinces Indonesia and 20 from Phatthalung (PT) province, Thailand. DNA samples were isolated from buffalo tail hairs. DNA sequences were manually assembled using BioEdit program with consideration of gaps and ambiguous sequences. The phylogenetic tree of buffalo was generated by PHYLIP software. The observed variables included haplotype diversity, genetic distance, and genetic tree. The 956 bp of amplified mtDNA D-loop fragment presented a total of 24 haplotypes with several mutations that included transitions (293), transversions (60), deletions (15), and insertions (20). The neighbor-joining tree using the Kimura 2 parameter model demonstrated two local buffalo clusters among buffalo from Kalimantan and Thailand with four buffalo relationship patterns observed from buffaloes in Kalimantan Island (KBuf and KrBuf), Indonesia. The Results of the present study demonstrated that the buffaloes sequence analysis revealed relatively high diversity and is a good basis to perform selection and modern buffalo breeding development.


2021 ◽  
Author(s):  
Juliana D Siqueira ◽  
Livia R Goes ◽  
Brunna M Alves ◽  
Pedro S de Carvalho ◽  
Claudia Cicala ◽  
...  

Abstract Numerous factors have been identified to influence susceptibility to SARS-CoV-2 infection and disease severity. Cancer patients are more prone to clinically evolve to more severe COVID-19 conditions, but the determinants of such a more severe outcome remain largely unknown. We have determined the full-length SARS-CoV-2 genomic sequences of cancer patients and healthcare workers (non-cancer controls) by deep sequencing and investigated the within-host viral population of each infection, quantifying intrahost genetic diversity. Naso- and oropharyngeal SARS-CoV-2+ swabs from 57 cancer patients and 14 healthcare workers from the Brazilian National Cancer Institute were collected in April–May 2020. Complete genome amplification using ARTIC network V3 multiplex primers was performed followed by next-generation sequencing. Assemblies were conducted in Geneious R11, where consensus sequences were extracted and intrahost single nucleotide variants were identified. Maximum likelihood phylogenetic analysis was performed using PhyMLv.3.0 and lineages were classified using Pangolin and CoV-GLUE. Phylogenetic analysis showed that all but one strain belonged to clade B1.1. Four genetically linked mutations known as the globally dominant SARS-CoV-2 haplotype (C241T, C3037T, C14408T and A23403G) were found in the majority of consensus sequences. SNV signatures of previously characterized Brazilian genomes were also observed in most samples. Another 85 SNVs were found at a lower frequency (1.4-19.7%) among the consensus sequences. Cancer patients displayed a significantly higher intrahost viral genetic diversity compared to healthcare workers. This difference was independent of SARS-CoV-2 Ct values obtained at the diagnostic tests, which did not differ between the two groups. The most common nucleotide changes of intrahost SNVs in both groups were consistent with APOBEC and ADAR activities. Intrahost genetic diversity in cancer patients was not associated with disease severity, use of corticosteroids, or use of antivirals, characteristics that could influence viral diversity. Moreover, the presence of metastasis, either in general or specifically in the lung, was not associated with intrahost diversity among cancer patients. Cancer patients carried significantly higher numbers of minor variants compared to non-cancer counterparts. Further studies on SARS-CoV-2 diversity in especially vulnerable patients will shed light onto the understanding of the basis of COVID-19 different outcomes in humans.


2014 ◽  
Vol 76 (11) ◽  
pp. 1451-1456 ◽  
Author(s):  
Masaki TAKASU ◽  
Namiko ISHIHARA ◽  
Teruaki TOZAKI ◽  
Hironaga KAKOI ◽  
Masami MAEDA ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 155
Author(s):  
Kefena Effa ◽  
Sonia Rosenbom ◽  
Jianlin Han ◽  
Tadelle Dessie ◽  
Albano Beja-Pereira

Matrilineal genetic diversity and relationship were investigated among eight morphologically identified native Ethiopian horse populations using polymorphisms in 46 mtDNA D-loop sequences (454 base pairs). The horse populations identified were Abyssinian, Bale, Borana, Horro, Kafa, Kundido feral horses, Ogaden and Selale. Mitochondrial DNA D-loop sequences were characterized by 15 variable sites that defined five different haplotypes. All genetic diversity estimates, including Reynolds’ linearized genetic distance, genetic differentiation (FST) and nucleotide sequence divergence (DA), revealed a low genetic differentiation in native Ethiopian horse populations. However, Kundido feral and Borana domestic horses were slightly diverged from the rest of the Ethiopian horse populations. We also tried to shed some light on the matrilineal genetic root of native Ethiopian horses from a network constructed by combining newly generated haplotypes and reference haplotypes deposited in the GenBank for Eurasian type Turkish Anatolian horses that were used as a genetic conduit between Eurasian and African horse populations. Ninety-two haplotypes were generated from the combined Ethio-Eurasian mtDNA D-loop sequences. A network reconstructed from the combined haplotypes using Median-Joining algorithm showed that haplotypes generated from native Ethiopian horses formed separate clusters. The present result encourages further investigation of the genetic origin of native African horses by retrieving additional mtDNA sequences deposited in the GenBank for African and Eurasian type horses.


2022 ◽  
Vol 101 (1) ◽  
Author(s):  
Rongala Laxmivandana ◽  
Yoya Vashi ◽  
Dipjyoti Kalita ◽  
Santanu Banik ◽  
Nihar Ranjan Sahoo ◽  
...  

2018 ◽  
Vol 46 (2) ◽  
pp. 57-67 ◽  
Author(s):  
Moe LWIN ◽  
Su Lai Yee MON ◽  
Yukio NAGANO ◽  
Kotaro KAWABE ◽  
Hideyuki MANNEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document