Classification of canola (Brassica napus) winter cultivars by secondary dormancy

2009 ◽  
Vol 89 (4) ◽  
pp. 613-619 ◽  
Author(s):  
S Gruber ◽  
K Emrich ◽  
W Claupein

Secondary dormancy is the major reason for seed persistence of canola (Brassica napus L.) in the soil. Volunteers emerging from the soil seed bank can lead to unwanted gene dispersal. More than 40 B. napus canola cultivars were tested for secondary dormancy under laboratory conditions. All cultivars were classified into groups of low, medium, and high dormancy by performing a cluster analysis. The results suggest that secondary dormancy is a cultivar-specific trait. Additionally, inter-year variation in dormancy indicates that it seems to be influenced by a set of environmental factors. Among years, classification of cultivars based on relative rank was more robust than classification based on absolute dormancy values. The classification of cultivars by their dormancy level would allow farmers to select and grow low-dormancy cultivars. Knowledge about the relative secondary dormancy of the currently grown cultivars could help growers and breeders lower canola seed bank persistence. Key words: Brassica napus, cluster analysis, genotype, secondary dormancy, soil seed bank

2013 ◽  
Vol 101 (2) ◽  
Author(s):  
Barbara Pipan ◽  
Jelka Šuštar-Vozlič ◽  
Vladimir Meglič

Author(s):  
Ya-Fei Shi ◽  
Zengru Wang ◽  
Bing-Xin Xu ◽  
Jian-Qiang Huo ◽  
Rui Hu ◽  
...  

Soil seed banks may offer great potential for restoring and maintaining desert ecosystems that have been degraded by climate change and anthropogenic disturbance. However, few studies have explored the annual dynamics in the composition and relative abundance of these soil seed banks. We conducted a long-term observational study to assess the effects of environmental factors (meteorology and microtopography) and aboveground vegetation on the soil seed bank of the Tengger Desert, China. The desert seed bank was dominated by annual herbs. We found that more rainfall in the growing season increased the number of seeds in the soil seed bank, and that quadrats at relatively higher elevations had fewer seeds. The species composition had more similarity in the seed bank than in the aboveground vegetation, though the seed bank and aboveground vegetation did change synchronously due to the rapid propagation of annuals. Together, our findings suggest that the combined effects of environmental factors and plant life forms determine the species composition and size of soil seed banks in deserts. Thus, if degraded desert ecosystems are left to regenerate naturally, the lack of shrub and perennial herb seeds could crucially limit their restoration. Human intervention and management may have to be applied to enhance the seed abundance of longer-lived lifeforms in degraded deserts.


2020 ◽  
Vol 42 (2) ◽  
pp. 85
Author(s):  
Annemieke Ruttledge ◽  
Ralph D. B. Whalley ◽  
Gregory Falzon ◽  
David Backhouse ◽  
Brian M. Sindel

A large and persistent soil seed bank characterises many important grass weeds, including Nassella trichotoma (Nees) Hack. ex Arechav. (serrated tussock), a major weed in Australia and other countries. In the present study we examined the effects of constant and alternating temperatures in regulating primary and secondary dormancy and the creation and maintenance of its soil seed bank in northern NSW, Australia. One-month-old seeds were stored at 4, 25°C, 40/10°C and 40°C, in a laboratory, and germination tests were conducted every two weeks. Few seeds germinated following storage at 4°C, compared with seeds stored at 25°C, 40/10°C and 40°C. Nylon bags containing freshly harvested seeds were buried among N. trichotoma stands in early summer, and germination tests conducted following exhumation after each season over the next 12 months. Seeds buried over summer and summer plus autumn had higher germination than seeds buried over summer plus autumn plus winter, but germination increased again in the subsequent spring. Seeds stored for zero, three, six and 12 months at laboratory temperatures were placed on a thermogradient plate with 81 temperature combinations, followed by incubation at constant 25°C of un-germinated seeds. Constant high or low temperatures prolonged primary dormancy or induced secondary dormancy whereas alternating temperatures tended to break dormancy. Few temperature combinations resulted in more than 80% germination.


2004 ◽  
Vol 26 (2) ◽  
pp. 126-137 ◽  
Author(s):  
Fernanda Costa Maia ◽  
Renato Borges de Medeiros ◽  
Valério de Patta Pillar ◽  
Telmo Focht

This research aimed to determine the soil seed bank and its relationship with environmental factors that have an influence in the distribution of the vegetation above the ground in an excluded area of natural grassland in the South of Brazil. Most of the 122 identified species in the seed bank were perennials. Data analysis indicated three distinct community groups, according to the size and composition of the soil seed bank in lowlands with permanent wet soils, in lowlands and in other areas. In general, lowlands were characterized by low-fertility soils, high moisture and aluminum contents, being spatially homogeneous habitats and, therefore, more restricted to vegetation heterogeneity than other parts of the relief. Environmental factors most associated with soil seed bank size and composition were relief position and their co-related soil variables such as: soil moisture content, potassium content, organic matter, basic saturation of cation exchange soil capacity, exchangeable basics sum of the soil and clay soil content. According to that, relief position, associated with combined effects of soil chemical properties related to it, determines the observed variation pattern of the soil seed bank, as a reflection of the vegetation above the area.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Wakshum Shiferaw ◽  
Tamrat Bekele ◽  
Sebsebe Demissew ◽  
Ermias Aynekulu

AbstractThe aims of the study were to analyze (1) the effects of Prosopis juliflora (Prosopis) on the spatial distribution and soil seed banks (SSB) diversity and density, (2) the effects of environmental factors on SSB diversity and density (number of seeds in the soil per unit area), and (3) the effects of animal fecal droppings on SSB diversity, density, and dispersal. Aboveground vegetation data were collected from different Prosopis-infested habitats from quadrats (20 × 20 m) in Prosopis thickets, Prosopis + native species stand, non-invaded woodlands, and open grazing lands. In each Prosopis-infested habitats, soil samples were collected from the litter layer and three successive soil layer, i.e., 0–3 cm, 3–6 cm, and 6–9 cm. Seeds from soil samples and animal fecal matter were separated in the green house using the seedling emergence technique. Invasion of Prosopis had significant effects on the soil seed bank diversity. Results revealed that the mean value of the Shannon diversity of non-invaded woodlands was being higher by 19.2%, 18.5%, and 11.0% than Prosopis thickets; Prosopis + native species stand and open grazing lands, respectively. The seed diversity and richness, recovered from 6–9-cm-deep layer were the highest. On the other hand, the density of Prosopis seeds was the highest in the litter layer. About 156 of seeds/kg (92.9%) of seeds were germinated from cattle fecal matter. However, in a small proportion of seedlings, 12 of seeds/kg (7.1%) were germinated from shot fecal matter. Thus, as the seeds in the soil were low in the study areas, in situ and ex situ conservation of original plants and reseeding of persistent grass species such as Cynodon dactylon, Cenchrus ciliaris, Chrysopogon plumulosus, and Brachiaria ramosa are recommended.


Sign in / Sign up

Export Citation Format

Share Document