scholarly journals Extra-tall stubble can increase crop yield in the semiarid Canadian prairie

2011 ◽  
Vol 91 (4) ◽  
pp. 783-785 ◽  
Author(s):  
Herb Cutforth ◽  
Brian McConkey ◽  
Sangu Angadi ◽  
Doug Judiesch

Cutforth, H., McConkey, B., Angadi, S. and Judiesch, D. 2011. Extra-tall stubble can increase crop yield in the semiarid Canadian prairie. Can. J. Plant Sci. 91: 783–785. Previous research in the semiarid prairie showed that crop yields increased as the height of standing stubble increased to 30 cm. Recent technology permits seeding into higher standing stubble. A 3-yr (2001–2003) study was conducted at Swift Current, SK, to determine how seeding canola, pulse, and wheat into cultivated, short (about 15 cm high), tall (about 30 cm high), and extra-tall (about 45 cm high) standing stubble affected crop yield. Crop yield and the overall average water use efficiency increased linearly as stubble height increased to 45 cm. Water use was independent of stubble height.


2013 ◽  
Vol 93 (2) ◽  
pp. 287-289
Author(s):  
Herb Cutforth

Cutforth, H. 2013. Yield of spring wheat and field pea seeded into standing and cultivated canola stubble on the semiarid Canadian prairie. Can. J. Plant Sci. 93: 287–289. Previous research in the semiarid prairie showed that crop yields increased as the height of standing cereal stubble increased to ≥45 cm. A 3-yr (2008–2010) study was conducted at Swift Current, SK, to determine how seeding field pea and spring wheat into cultivated and tall (≥45 cm high) canola stubble affected crop yield. Similar to cereal stubble, crop yield and water use efficiency were significantly greater for crops grown in the tall standing canola stubble compared to the cultivated stubble. Water use by each crop was independent of stubble management.



2020 ◽  
Vol 7 (10) ◽  
pp. 1523-1526 ◽  
Author(s):  
Dongbao Sun ◽  
Haigang Li ◽  
Enli Wang ◽  
Wenqing He ◽  
Weiping Hao ◽  
...  


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10967
Author(s):  
Erastus Mak-Mensah ◽  
Peter Bilson Obour ◽  
Eunice Essel ◽  
Qi Wang ◽  
John K. Ahiakpa

Background China is the leading consumer of plastic film worldwide. Plastic film mulched ridge-furrow is one of the most widely adopted agronomic and field management practices in rain-fed agriculture in dry-land areas of China. The efficiency of plastic film mulching as a viable method to decrease evapotranspiration (ET), increase crop yields, and water use efficiency (WUE), has been demonstrated extensively by earlier studies. Methods A comprehensive evaluation of how co-application of plastic-film mulch and biochar in different agro-environments under varying climatic conditions influence ET, crop yield, WUE, and soil microbial activity were assessed. We performed a meta-analysis using the PRISMA guideline to assess the effect of plastic-film mulched ridge-furrow and biochar on ET, yield, and WUE of wheat (Triticum aestivum L.), potato (Solanum tuberosum L.), and maize (Zea mays L.) in northern China. Results The use of plastic film increased average yields of wheat (75.7%), potato (20.2%), and maize (12.9%) in Gansu, Ningxia, Shaanxi, and Shanxi provinces, respectively due to the reduction in ET by 12.8% in Gansu, 0.5% in Ningxia, and 4.1% in Shanxi, but increased in Shaanxi by 0.5% compared to no-mulching. These changes may be attributed to the effect of plastic film mulch application which simultaneously increased WUE by 68.5% in Gansu, 23.9% in Ningxia, 16.2% in Shaanxi, and 12.8% in Shanxi, respectively. Compared to flat planting without mulching, in three years, the yield of maize increased with the co-application of plastic film and biochar by 22.86% in the Shanxi and Shaanxi regions. Conclusion Our analysis revealed co-application of plastic film with biochar is integral for improving soil and water conservation in rain-fed agriculture and as an integrated practice to avert drought while simultaneously mitigating runoff and erosion.



Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar


2020 ◽  
Vol 202 ◽  
pp. 104676
Author(s):  
Xiaobo Gu ◽  
Huanjie Cai ◽  
Heng Fang ◽  
Yupeng Li ◽  
Pengpeng Chen ◽  
...  


Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122-131 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar


2009 ◽  
Vol 96 (3) ◽  
pp. 374-382 ◽  
Author(s):  
Yajun Wang ◽  
Zhongkui Xie ◽  
Sukhdev S. Malhi ◽  
Cecil L. Vera ◽  
Yubao Zhang ◽  
...  


2020 ◽  
Vol 13 (6) ◽  
pp. 2744
Author(s):  
Elaine Cristina Batista da Silva ◽  
José Romualdo De Sousa Lima ◽  
Antônio Celso Dantas Antonino ◽  
Airon Aparecido Silva de Melo ◽  
Eduardo Soares de Souza ◽  
...  

A irrigação suplementar pode ser uma técnica promissora para o aumento da produção da palma forrageira, contudo, depende da evapotranspiração (ET). A irrigação e a ET estão estritamente relacionados com a produtividade das culturas (P), de modo que a relação entre P e ET resulta na eficiência no uso de água (EUA). Assim, objetivou-se avaliar P, ET e EUA em palma, sob irrigação suplementar. O experimento foi conduzido em campo, com palma submetida a irrigação por gotejamento com intervalos de reposição de água no solo de 7 (T7), 14 (T14) e 21 (T21) dias, mais o tratamento de sequeiro (T0), em blocos ao acaso, com 4 repetições. O crescimento da palma foi monitorado por meio da medição da largura (LC), do comprimento (CC), da área (AC), do índice de área (IAC) e da espessura dos cladódios (EC). Ao longo do ciclo da cultura também foram monitoradas as condições meteorológicas. A ET foi obtida como termo residual da equação do balanço hídrico. Os tratamentos não tiveram efeitos significativos nas variáveis biométricas e na produtividade da palma forrageira. A menor ET foi obtida no T0 (406,1 mm total e 1,7 mm d‑1), sendo que o T7 apresentou a maior ET (664,4 mm total e 2,8 mm d-1). A maior EUA (392,8 kg MF ha-1 mm-1) foi obtida no tratamento sob sequeiro (T0). Com base na produtividade e na EUA da palma forrageira, recomenda-se, para as condições do município de Garanhuns, que o cultivo da mesma seja realizado sob condições de sequeiro.Effect of the Supplemental Irrigation on Yield and Water Use Efficiency of Cactus Pear A B S T R A C TThe supplementary irrigation may be a promising technique to increase forage cactus yield, however, it depends of evapotranspiration (ET). Irrigation and ET are closely related to crop yields (P), so the relationships between P and ET result in water use efficiency (WUE). Thus, the objective was to evaluate P, ET and WUE in cactus pear, under supplementary irrigation. The experiment was conducted under field conditions with cactus pear submitted to drip irrigation with soil water replacement intervals of 7 (T7), 14 (T14) and 21 (T21) days, plus the rainfed treatment (T0), in blocks with 4 replicates. Cactus pear growth, by the measurements of width (WC), length (LC), area (CA), area index (CAI) and thickness of cladodes (CD), was monitored. Meteorological conditions along the cactus pear cycle were monitored. The ET was quantified by the soil water balance method. The treatments had no effects on the biometric variables and yield of cactus pear. ET was lower in T0 (406.1 mm total and 1.7 mm day-1), with T7 showing the highest values of ET (664.4 mm total and 2.8 mm day-1). It was observed that the largest WUE (392.8 kg MF ha-1 mm-1) was in the rainfed treatment (T0). On the basis of the yield and WUE of the cactus pear, it is recommended, for the conditions of the municipality of Garanhuns that the cultivation of the same be carried out under conditions of rainfed.Key words: Soil moisture; evapotranspiration; water balance.



2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Kamran Baksh Soomro ◽  
M. M. Shaikh ◽  
Sanyogita Andriyas ◽  
Muhammad Rizwan Shahid

Water shortage is a real problem in many parts of the world and finding alternative solutions such as the application of saline water in cropping systems is highly appreciated. Research on drip irrigation and soil salinity is still inadequate, and their effect on crop yield and water use efficiency (WUE) is a huge challenge for small farmers. The present study was conducted in Malir, a semiarid region in the Sindh province of Pakistan. The purpose was to estimate the effects of two different qualities of irrigation water including fresh quality water (IT1 0.56 dS m−1) and saline groundwater (IT2 2.89 dS m−1) on WUE using drip irrigation technology in 2018–19. The experimental design was complete randomized block design (RCBD) with two treatments of irrigation: (1) freshwater (IT1) with 0.56 dS m−1 electrical conductivity and (2) saline water (IT2) with 2.89 dS m−1 electrical conductivity. The average biomass and crop yield under IT1 were 10.2 t.ha−1 and 7.4 t.ha−1, respectively, and were found higher than those under IT2 (7.3 t−1 and 4.2 t.ha−1, respectively). Hence, both the treatments remained equally effective in season 1 as compared to season 2 ( p ≤ 0.05 ). The WUE of bitter melon under IT1 was 1.60 and 1.56 kg.m−3 in seasons 1 and 2, respectively, and was higher than those under IT2 which were observed 1.21 and 1.07 kg.m−3 in seasons 1 and 2, respectively.



Sign in / Sign up

Export Citation Format

Share Document