RESPONSE OF AGRONOMIC AND BARLEY QUALITY TRAITS TO NITROGEN FERTILIZER

1979 ◽  
Vol 59 (3) ◽  
pp. 831-837 ◽  
Author(s):  
CHARLES F. McGUIRE ◽  
E. A. HOCKETT ◽  
D. M. WESENBERG

Malting and non-malting barleys fertilized with nitrogen were evaluated for qualitative kernel properties, agronomic performance, cultivar-treatment interactions, and the relationship between malt quality and agronomic performance. Sixty-seven kilograms per hectare of N increased the mean yield of five barley cultivars by 38 and 44% over the checks at Ft. Ellis in 1971 (environment 3) and 1973 (environment 4), respectively; 50 kg/ha of N increased yields over the checks at Aberdeen by 8% in both 1971 (environment 1) and 1973 (environment 2). Doubling the rates at either location did not increase yields further. Nitrogen treatments delayed heading dates at Ft. Ellis in 1971 and height of plants increased at Ft. Ellis but not at Aberdeen. Nitrogen increased barley diastatic power (DP), but decreased barley extracts. Barley protein percent increased significantly with each increment of applied N. A differential response of cultivars to applied N resulted in interactions for barley DP and percent protein. Cultivars × environments interacted for grain yield, heading date, barley DP, barley extract, and grain protein content. Nitrogen rates interacted with environment for plant height, barley extract, and grain protein content. Forty-six of 65 simple correlations between malting and agronomic or kernel traits were significant.

2013 ◽  
Vol 13 (58) ◽  
pp. 7693-7710
Author(s):  
Haile D ◽  
◽  
R Nigussie-Dechassa ◽  
W Abdo ◽  
F Girma ◽  
...  

The use of optimum seeding rate for the genotype may enhance productivity and grain protein content of durum wheat. Therefore, an experiment was conducted at two locations in south-eastern Ethiopia during the main cropping season of 2008 with the objective of elucidating the effects of seeding rate and genotype on agronomic performance and grain protein content of the crop. The experiment consisted of factorial arrangements of four improved durum wheat genotypes and five seeding rates, which were laid out as a randomized complete block design with three replicates. Seeding rates significantly influenced agronomic performances including number of fertile spikes m-2, plant height, number of seeds spike-1, and grain yield. Number of fertile spikes m-2 was increased proportionally with the seeding rate and the highest number (382 spikes m-2) was recorded in the highest seeding rate of 200kg ha-1. Inversely, the highest number of kernels spike-1 (29.8) was at the seeding rate of 100 kg ha-1. The highest grain yield (4341 kg ha-1) was obtained in response to seeding rate of 175 kg ha-1, which was in statistical parity with the yield obtained at the seeding rate of 150 kg ha-1. However, grain protein content was not influenced by the seeding rates. There were significant (P ≤ 0.05) variations among the genotypes for all the agronomic traits measured. The largest number of fertile spikes m-2 was recorded for the genotypes Oda (360 spikes m-2) and Bakalcha (345 spikes m-2). Genotype Illani produced the longest spike (6.9 cm). Oda and Illani produced the highest numbers of seeds spike-1, 38.8 and 36.9, respectively. The number of fertile spikes m-2, number of seeds spike-2 and kernels weight significantly contributed grain yield. The genotypes had exhibited less variation for grain protein content. Except for grain yield and harvest index, seeding rate x genotype interaction had no significant effect on other agronomic traits. Highest grain yields of 4938 kg ha-1 and 4774 kg ha1 were obtained from genotypes Ejersa and Bakalcha when sown at the seeding rate of 150 kg ha-1 and 175 kg ha-1, respectively. Grain protein response was significantly influenced by the interaction effect in which genotype Oda had the highest (12.9%) and lowest (10.5%) protein contents at the highest (200 kg ha-1) and lowest (100 kg ha-1) seeding rates, respectively.


2014 ◽  
Vol 65 (9) ◽  
pp. 854 ◽  
Author(s):  
H. A. Eagles ◽  
Robyn McLean ◽  
R. F. Eastwood ◽  
M.-J. Appelbee ◽  
Karen Cane ◽  
...  

The Gpc-B1 gene from wild emmer has been proposed as a potential mechanism for improving grain protein in bread wheat without reducing grain yield. Near-isolines with and without the Gpc-B1 gene in three Australian-adapted genetic backgrounds, Gladius, Wyalkatchem and VR1128, were compared in 14 experiments across the south and west of Australia for grain yield, grain protein content and grain weight. The donor parents of Gpc-B1 were the Canadian cultivars Burnside and Somerset. One of the 14 experiments was discarded because of inadequate rust control and confounding effects of Yr36, a gene closely linked to Gpc-B1. Heading date and test weight were measured in five experiments. Across all comparisons, Gpc-B1 increased grain protein content and reduced grain weight, with a negligible effect on grain yield. Selected lines containing Gpc-B1 in a Wyalkatchem background had comparable grain yields to the elite cultivar Mace, but with significantly higher grain protein contents, slightly higher grain weights, similar heading dates and acceptable test weights. The development of agronomically acceptable lines containing Gpc-B1 was partially attributed to the removal of undesirable genes from wild emmer during the breeding of the Canadian donor parents and the use of Australian recurrent parents with high test weights.


2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Saule Kenzhebayeva ◽  
Alfia Abekova ◽  
Saule Atabayeva ◽  
Gulzira Yernazarova ◽  
Nargul Omirbekova ◽  
...  

Deficiency of metals, primarily Fe and Zn, affects over half of the world’s population. Human diets dominated by cereal products cause micronutrient malnutrition, which is common in many developing countries where populations depend heavily on staple grain crops such as wheat, maize, and rice. Biofortification is one of the most effective approaches to alleviate malnutrition. Genetically stable mutant spring wheat lines (M7 generation) produced via 100 or 200 Gy gamma treatments to broaden genetic variation for grain nutrients were analyzed for nutritionally important minerals (Ca, Fe, and Zn), their bioavailability, and grain protein content (GPC). Variation was 172.3–883.0 mg/kg for Ca, 40.9–89.0 mg/kg for Fe, and 22.2–89.6 mg/kg for Zn. In mutant lines, among the investigated minerals, the highest increases in concentrations were observed in Fe, Zn, and Ca when compared to the parental cultivar Zhenis. Some mutant lines, mostly in the 100 Gy-derived germplasm, had more than two-fold higher Fe, Zn, and Ca concentrations, lower phytic acid concentration (1.4–2.1-fold), and 6.5–7% higher grain protein content compared to the parent. Variation was detected for the molar ratios of Ca:Phy, Phy:Fe, and Phy:Zn (1.27–10.41, 1.40–5.32, and 1.78–11.78, respectively). The results of this study show how genetic variation generated through radiation can be useful to achieve nutrient biofortification of crops to overcome human malnutrition.


Author(s):  
Isaiah O. Ochieng’ ◽  
Harun I. Gitari ◽  
Benson Mochoge ◽  
Esmaeil Rezaei-Chiyaneh ◽  
Joseph P. Gweyi-Onyango

Sign in / Sign up

Export Citation Format

Share Document