Nitrogen application rate, timing and history effects on nitrous oxide emissions from corn (Zea maysL.)

2014 ◽  
Vol 94 (4) ◽  
pp. 563-573 ◽  
Author(s):  
Amal K. Roy ◽  
Claudia Wagner-Riddle ◽  
Bill Deen ◽  
John Lauzon ◽  
Tom Bruulsema

Roy, A. K., Wagner-Riddle, C., Deen, B., Lauzon, J. and Bruulsema, T. 2014. Nitrogen application rate, timing and history effects on nitrous oxide emissions from corn (Zea mays L.). Can. J. Soil Sci. 94: 563–573. Nitrous oxide (N2O) emissions resulting from application of nitrogen (N) fertilizer contribute to the greenhouse gas footprint of corn production. In eastern Canada, corn is a major crop with most N fertilizer applied pre- or at planting. This timing of application results in a lack of synchrony of soil N supply and crop N demand. Matching the amount and timing of application to crop uptake has been suggested as a mitigation measure to reduce N losses, and is an integral part of the 4R Nutrient Stewardship program. This study examined the effect of timing, rate and history of urea-ammonium nitrate application on N2O emissions in corn in 2011 and 2012 at Elora, ON, Canada. Treatments were three N rates (30, 145 and 218 kg N ha−1); two timings (N injected in mid-row at planting and at the 8th leaf stage, V8); two histories (short-term: applying N rate treatments on plots that had received 145 kg N ha−1in the previous year, and long-term: applying the same N rate to a given plot over the duration of the trial). N2O emissions were measured using static chambers. History of N application did not have an effect on N2O emissions or grain yield. In both years, cumulative N2O emissions during the growing season and corn yields increased significantly with increasing N application rates. In 2011, cumulative N2O emissions were significantly lower when N was applied as side-dress at V8 (0.88 kg N ha−1) compared with planting (2.12 kg N ha−1), with no significant impact on corn grain yield (average 9.1 Mg ha−1). In contrast, in 2012, limited rainfall reduced both N2O emissions and corn grain yield, and neither N2O emission (average 0.17 kg N ha−1) nor grain yield (average 6.7 Mg ha−1) was affected by timing of N application. Applying N as side-dress at V8 instead of at planting and using the recommended N rate were shown to be effective N2O emission mitigation practices without affecting corn yield during a typical wet spring in Ontario.

2012 ◽  
Vol 92 (3) ◽  
pp. 493-499 ◽  
Author(s):  
M.J. Helmers ◽  
X. Zhou ◽  
J.L. Baker ◽  
S.W. Melvin ◽  
D.W. Lemke

Helmers, M. J., Zhou, X., Baker, J. L., Melvin, S. W. and Lemke, D. W. 2012. Nitrogen loss on tile-drained Mollisols as affected by nitrogen application rate under continuous corn and corn-soybean rotation systems. Can. J. Soil Sci. 92: 493–499. Nitrate-nitrogen (NO3-N) loss from production agricultural systems through subsurface drainage networks is of local and regional concern throughout the Midwestern United States. The increased corn acreage and the practice of growing continuous corn instead of a corn-soybean rotation system due to the increasing demand for food and energy have raised questions about the environmental impacts of this shift in cropping systems. The objective of this 4-yr (1990–1993) study was to evaluate the effect of nitrogen (N) application rate (0–168 kg N ha−1 for corn following soybean and 0–224 kg N ha−1 for corn following corn) on NO3-N concentration, NO3-N losses, and crop yields in continuous corn and corn-soybean production systems on tile-drained Mollisols in north central Iowa. The results show that NO3-N concentrations from the continuous corn system were similar to NO3-N concentrations from the corn-soybean rotation at equivalent N application rates.When extra N fertilizer (approximately 56 kg N ha−1) was applied to continuous corn than the corn-soybean rotation, this resulted in 14–36% greater NO3-N concentrations in subsurface drainage from the continuous corn system. While corn yield increased as N application rate increased, corn yields at the recommended N application rates (112–168 kg N ha−1) in the corn-soybean rotation were up to 3145 kg ha−1 greater than corn yields at the recommended application rates (168–224 kg N ha−1) in the continuous corn system. The corn-soybean rotation with recommended N application rates (168–224 kg N ha−1) appeared to be beneficial environmentally and economically.


2013 ◽  
Vol 38 (9) ◽  
pp. 1657-1664 ◽  
Author(s):  
Wen-Xue DUAN ◽  
Zhen-Wen YU ◽  
Yong-Li ZHANG ◽  
Dong WANG ◽  
Yu SHI

Sign in / Sign up

Export Citation Format

Share Document