scholarly journals Corrosion Resistance of Mild Steel in Simulated Concrete Pore Solution in Presence of Chloride Ions - An Overview

2015 ◽  
Vol 33 (3) ◽  
pp. 195-200 ◽  
Author(s):  
P N Devi ◽  
S Rajendran ◽  
J Sathiyabama ◽  
R J Rathish ◽  
S Santhanaprabha ◽  
...  
Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Ye Wang ◽  
Guosong Wu ◽  
Jiapeng Sun

Magnesium alloys are considered for building materials in this study due to their natural immunity to corrosion in alkaline concrete pore solution. But, chloride ions attack often hinders the application of most metals. Therefore, it is necessary to conduct a preliminary corrosion evaluation and attempt to find an effective way to resist the attack of chloride ions in concrete pore solution. In our study, hydrothermal treatment is carried out to modify Mg-9.3 wt. % Al alloy. After the treatment in NaOH solution for 10 h, scanning electron microscopy (SEM) reveals that a layer of dense coating with a thickness of about 5 μm is formed on Mg alloy. Energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray Diffraction (XRD) are combined to analyze the coating, and it is thereby confirmed that the coating is mainly composed of Mg(OH)2. As expected, both immersion test and electrochemical corrosion test show that the coated magnesium alloy has a better corrosion resistance than the uncoated one in simulated concrete pore solution with and without chloride ions. In summary, it indicates that hydrothermal treatment is a feasible method to improve the corrosion resistance of Mg alloys used for building engineering from the perspective of corrosion science.


2013 ◽  
Vol 2 (2) ◽  
pp. 605-613 ◽  
Author(s):  
M. PANDIARAJAN M. PANDIARAJAN ◽  
P. PRABHAKAR P. PRABHAKAR ◽  
S. RAJENDRAN S. RAJENDRAN

2020 ◽  
Vol 10 (13) ◽  
pp. 4568
Author(s):  
Hany S. Abdo ◽  
Asiful H. Seikh ◽  
Jabair A. Mohammed ◽  
Monis Luqman ◽  
Sameh A. Ragab ◽  
...  

Reinforced steel bars (rebar) are extensively used in construction, and the main challenge is in minimizing corrosion due to oxide or passive layer breakdown. In contrast, dual-phase (DP) steel has good corrosion resistance. This study investigated the effect of Cl− ions on the electrochemical corrosion behavior of DP rebar and conventional rebar. Corrosion behavior studies and electrochemical measurements were conducted on DP rebar and conventional rebar in simulated concrete pore solution with different concentrations of Cl− ions. Microstructure analysis, surface morphology analysis, and corroded surface characterization were performed using optical microscopy, field emission scanning electron microscopy, and Raman spectroscopy, respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements revealed that DP rebar has good passivity, leading to better corrosion resistance and greater strength compared to ordinary rebar. In addition, DP rebar showed better passivity behavior compared to conventional rebar in alkaline solution. Therefore, the presence of a dual phase (ferrite and martensite) in reinforced concrete structured steel induces good corrosion resistance.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Jacob Ress ◽  
Ulises Martin ◽  
Juan Bosch ◽  
David M. Bastidas

The protection of mild steel by modified epoxy coating containing colophony microencapsulated corrosion inhibitors was investigated in this study. The corrosion behavior of these epoxy coatings containing colophony microcapsules was studied by electrochemical analysis using cyclic potentiodynamic polarization and electrochemical impedance spectroscopy. The microcapsule coating showed decreased corrosion current densities of 2.75 × 10−8 and 3.21 × 10−8 A/cm2 along with corrosion potential values of 0.349 and 0.392 VSCE for simulated concrete pore solution and deionized water with 3.5 wt.% NaCl, respectively, indicating improved corrosion protection in both alkaline and neutral pH. Electrochemical impedance spectroscopy analysis also showed charge transfer resistance values over one order of magnitude higher than the control sample, corroborating the electrochemical corrosion potential and current density testing results. Overall, the use of colophony microcapsules showed improved corrosion protection in simulated concrete pore solution and DI water solutions containing chloride ions.


Sign in / Sign up

Export Citation Format

Share Document