Unitary Transformations

1954 ◽  
Vol 6 ◽  
pp. 69-72 ◽  
Author(s):  
B. E. Mitchell

We consider the problem of finding a unique canonical form for complex matrices under unitary transformation, the analogue of the Jordan form (1, p. 305, §3), and of determining the transforming unitary matrix (1, p. 298, 1. 2). The term “canonical form” appears in the literature with different meanings. It might mean merely a general pattern as a triangular form (the Jacobi canonical form (8, p. 64)). Again it might mean a certain matrix which can be obtained from a given matrix only by following a specific set of instructions (1). More generally, and this is the sense in which we take it, it might mean a form that can actually be described, which is independent of the method used to obtain it, and with the property that any two matrices in this form which are unitarily equivalent are identical.

2017 ◽  
Vol 2 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Tetiana Klymchuk

AbstractP. Van Dooren (1979) constructed an algorithm for computing all singular summands of Kronecker’s canonical form of a matrix pencil. His algorithm uses only unitary transformations, which improves its numerical stability. We extend Van Dooren’s algorithm to square complex matrices with respect to consimilarity transformations $\begin{array}{} \displaystyle A \mapsto SA{\bar S^{ - 1}} \end{array}$ and to pairs of m × n complex matrices with respect to transformations $\begin{array}{} \displaystyle (A,B) \mapsto (SAR,SB\bar R) \end{array}$, in which S and R are nonsingular matrices.


1973 ◽  
Vol 25 (4) ◽  
pp. 820-828
Author(s):  
N. A. Wiegmann

If A is a finite matrix with complex elements, and if A = AT (where AT denotes the transpose of A ), it is known (see [8] ) that there exists a unitary matrix U such that UA UT = D is a real diagonal matrix with non-negative elements which is a canonical form for A relative to the given U, UT transformation.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 511
Author(s):  
Robin Lorenz ◽  
Jonathan Barrett

The causal structure of a unitary transformation is the set of relations of possible influence between any input subsystem and any output subsystem. We study whether such causal structure can be understood in terms of compositional structure of the unitary. Given a quantum circuit with no path from input system A to output system B, system A cannot influence system B. Conversely, given a unitary U with a no-influence relation from input A to output B, it follows from [B. Schumacher and M. D. Westmoreland, Quantum Information Processing 4 no. 1, (Feb, 2005)] that there exists a circuit decomposition of U with no path from A to B. However, as we argue, there are unitaries for which there does not exist a circuit decomposition that makes all causal constraints evident simultaneously. To address this, we introduce a new formalism of `extended circuit diagrams', which goes beyond what is expressible with quantum circuits, with the core new feature being the ability to represent direct sum structures in addition to sequential and tensor product composition. A causally faithful extended circuit decomposition, representing a unitary U, is then one for which there is a path from an input A to an output B if and only if there actually is influence from A to B in U. We derive causally faithful extended circuit decompositions for a large class of unitaries, where in each case, the decomposition is implied by the unitary's respective causal structure. We hypothesize that every finite-dimensional unitary transformation has a causally faithful extended circuit decomposition.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Tatiana Klimchuk ◽  
Vladimir V. Sergeichuk

AbstractL. Huang [Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001) 21–30] gave a canonical form of a quaternion matrix with respect to consimilarity transformations A ↦ ˜S


1960 ◽  
Vol 12 ◽  
pp. 438-446 ◽  
Author(s):  
J W. Stander ◽  
N. A. Wiegmann

If A is a matrix with complex elements and if A = AT (where AT denotes the transpose of A), there exists a non-singular matrix P such that PAPT = D is a diagonal matrix (see (3), for example). It is also true (see the principal result of (5)) that for such an A there exists a unitary matrix U such that UAUT = D is a real diagonal matrix with nonnegative elements which is a canonical form for A relative to the given U, UT transformation.


1961 ◽  
Vol 13 ◽  
pp. 149-156 ◽  
Author(s):  
D. W. Crowe

The two-dimensional unitary space, U2, is a complex vector space of points (x, y) = (x1 + ix2, y1 + iy2), for which the distance between (x, y) and (x', y') is defined by . A unitary transformation is a linear transformation which preserves distance. A line is the set of points (x, y) satisfying some complex equation ax + by = c. A unitary transformation is a (unitary) reflection if it is of finite period n > 1 and leaves a line pointwise invariant. Thus à unitary matrix represents a reflection if its two characteristic roots are 1 and a complex nth root (n > 1) of 1.


1961 ◽  
Vol 2 (1) ◽  
pp. 122-126 ◽  
Author(s):  
N. A. Wiegmann

If A and B are two complex matrices and if U is a complex unitary matrix such that UAUCT = B (where UCT denotes the conjugate transpose of U), then A and B are said to be unitarily similar. Necessary and sufficient conditions that two matrices be unitarily similar have been dealt with in [5] (from the point of view of group representation theory) and in [2] (from the point of view of developing a canonical form under unitary similarity).


Sign in / Sign up

Export Citation Format

Share Document