A Note on Strongly Regular Function Algebras

1969 ◽  
Vol 21 ◽  
pp. 912-914 ◽  
Author(s):  
Donald R. Wilken

Let A be a uniformly closed subalgebra of C(X), the algebra of all complex-valued continuous functions on a compact Hausdorff space X. If A separates the points of X and contains the constant functions, A is called a function algebra. The algebra A is said to be strongly regular on X if it has the following property.Property. For each f in A, each point x in X, and every , there is a neighbourhood U of x and a function g in A with g(y) = f(x) for all y in U and for all y in X.That is, each function in A is uniformly approximate on X by functions in A which are constant near any point of X. Stated in terms of ideals, strong regularity means that, for each x, the ideal of functions vanishing in a neighbourhood of x is uniformly dense in the maximal ideal at x.

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Han Ju Lee

Let X be a complex Banach space and Cb(Ω:X) be the Banach space of all bounded continuous functions from a Hausdorff space Ω to X, equipped with sup norm. A closed subspace A of Cb(Ω:X) is said to be an X-valued function algebra if it satisfies the following three conditions: (i) A≔{x⁎∘f:f∈A,  x⁎∈X⁎} is a closed subalgebra of Cb(Ω), the Banach space of all bounded complex-valued continuous functions; (ii) ϕ⊗x∈A for all ϕ∈A and x∈X; and (iii) ϕf∈A for every ϕ∈A and for every f∈A. It is shown that k-homogeneous polynomial and analytic numerical index of certain X-valued function algebras are the same as those of X.


1975 ◽  
Vol 18 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Bruce Lund

Let X be a compact Hausdorff space and C(X) the complexvalued continuous functions on X. We say A is a function algebra on X if A is a point separating, uniformly closed subalgebra of C(X) containing the constant functions. Equipped with the sup-norm ‖f‖ = sup{|f(x)|: x ∊ X} for f ∊ A, A is a Banach algebra. Let MA denote the maximal ideal space.Let D be the closed unit disk in C and let U be the open unit disk. We call A(D)={f ∊ C(D):f is analytic on U} the disk algebra. Let T be the unit circle and set C1(T) = {f ∊ C(T): f'(t) ∊ C(T)}.


1978 ◽  
Vol 30 (03) ◽  
pp. 490-498 ◽  
Author(s):  
Nicholas Farnum ◽  
Robert Whitley

The maximal ideals in a commutative Banach algebra with identity have been elegantly characterized [5; 6] as those subspaces of codimension one which do not contain invertible elements. Also, see [1]. For a function algebra A, a closed separating subalgebra with constants of the algebra of complex-valued continuous functions on the spectrum of A, a compact Hausdorff space, this characterization can be restated: Let F be a linear functional on A with the property: (*) For each ƒ in A there is a point s, which may depend on f, for which F(f) = f(s).


1970 ◽  
Vol 22 (5) ◽  
pp. 1002-1004 ◽  
Author(s):  
Robert G. Blumenthal

In this paper we prove that the proper Dirichlet subalgebras of the disc algebra discovered by Browder and Wermer [1] are maximal subalgebras of the disc algebra (Theorem 2). We also give an extension to general function algebras of a theorem of Rudin [4] on the existence of maximal subalgebras of C(X). Theorem 1 implies that every function algebra defined on an uncountable metric space has a maximal subalgebra.A function algebra A on X is a uniformly closed, point-separating subalgebra of C(X), containing the constants, where X is a compact Hausdorff space. If A and B are function algebras on X, A ⊂ B, A ≠ B, we say A is a maximal subalgebra of B if whenever C is a function algebra on X with A ⊂ C ⊂ B, either C = A or C = B.


1974 ◽  
Vol 26 (02) ◽  
pp. 405-411 ◽  
Author(s):  
Bruce Lund

Let X be a compact Hausdorff space and C(X) the set of all continuous complex-valued functions on X. A function algebra A on X is a uniformly closed, point separating subalgebra of C(X) which contains the constants. Equipped with the sup-norm, A becomes a Banach algebra. We let MA denote the maximal ideal space and SA the Shilov boundary.


1993 ◽  
Vol 36 (1) ◽  
pp. 123-128
Author(s):  
K. Seddighi ◽  
H. Zahedani

AbstractLet C(X) be the space of all continuous complex-valued functions defined on the compact Hausdorff space X. We characterize the M-ideals in a uniform algebra A of C(X) in terms of singular measures. For a Banach function algebra B of C(X) we determine the connection between strong hulls for B and its peak sets. We also show that M(X) the space of complex regular Borel measures on X has no M-ideal.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Davood Alimohammadi ◽  
Hadis Pazandeh

Let be a compact Hausdorff space, be a continuous involution on and denote the uniformly closed real subalgebra of consisting of all for which . Let be a compact metric space and let denote the complex Banach space of complex-valued Lipschitz functions of order on under the norm , where . For , the closed subalgebra of consisting of all for which as , denotes by . Let be a Lipschitz involution on and define for and for . In this paper, we give a characterization of extreme points of , where is a real linear subspace of or which contains 1, in particular, or .


1994 ◽  
Vol 05 (02) ◽  
pp. 201-212 ◽  
Author(s):  
HERBERT KAMOWITZ ◽  
STEPHEN SCHEINBERG

Many commutative semisimple Banach algebras B including B = C (X), X compact, and B = L1 (G), G locally compact, have the property that every homomorphism from B into C1[0, 1] is compact. In this paper we consider this property for uniform algebras. Several examples of homomorphisms from somewhat complicated algebras of analytic functions to C1[0, 1] are shown to be compact. This, together with the fact that every homomorphism from the disc algebra and from the algebra H∞ (∆), ∆ = unit disc, to C1[0, 1] is compact, led to the conjecture that perhaps every homomorphism from a uniform algebra into C1[0, 1] is compact. The main result to which we devote the second half of this paper, is to construct a compact Hausdorff space X, a uniformly closed subalgebra [Formula: see text] of C (X), and an arc ϕ: [0, 1] → X such that the transformation T defined by Tf = f ◦ ϕ is a (bounded) homomorphism of [Formula: see text] into C1[0, 1] which is not compact.


1966 ◽  
Vol 62 (4) ◽  
pp. 649-666 ◽  
Author(s):  
G. A. Reid

The Stone-Weierstrass theorem gives very simple necessary and sufficient conditions for a subset A of the algebra of all real-valued continuous functions on the compact Hausdorff space X to generate a subalgebra dense in namely, this is so if and only if the functions of A strongly separate the points of X, in other words given any two distinct points of X there exists a function in A taking different values at these points, and given any point of X there exists a function in A non-zero there. In the case of the algebra of all complex-valued continuous functions on X, the same result holds provided that we consider the subalgebra generated by A together with Ā, the set of complex conjugates of the functions in A.


1990 ◽  
Vol 42 (5) ◽  
pp. 776-789 ◽  
Author(s):  
Takahiko Nakazi

Let X be a compact Hausdorff space, let C(X) be the algebra of complex-valued continuous functions on X, and let A be a uniform algebra on X. Fix a nonzero complex homomorphism τ on A and a representing measure m for τ on X. The abstract Hardy space Hp = Hp(m), 1 ≤ p ≤ ∞, determined by A is defined to the closure of Lp = Lp(m) when p is finite and to be the weak*-closure of A in L∞ = L∞(m) p = ∞.


Sign in / Sign up

Export Citation Format

Share Document