The Coarseness of the Complete Bipartite Graph

1969 ◽  
Vol 21 ◽  
pp. 1086-1096 ◽  
Author(s):  
Lowell W. Beineke ◽  
Richard K. Guy

The coarseness, c(G), of a graph G is the maximum number of edge-disjoint, non-planar graphs whose union is G. The coarseness of the complete graph has been investigated elsewhere (1; 2). We consider the coarseness of the complete bipartite, or 2-coloured, graph, Km,n, consisting of sets of mand nvertices, each member of one set being joined by an edge to each member of the other. No members of one set are joined to each other.Our results are summarized in the following theorem, where square brackets denote “integer part”.THEOREM. If m= 3p + d, 0 ≦ d≦ 2, and n = 3q + e, 0 ≦ e ≦ 2, then for d = 0 or 1 and e = 0 or 1,1

1970 ◽  
Vol 22 (5) ◽  
pp. 1082-1096 ◽  
Author(s):  
Don R. Lick ◽  
Arthur T. White

Graphs possessing a certain property are often characterized in terms of a type of configuration or subgraph which they cannot possess. For example, a graph is totally disconnected (or, has chromatic number one) if and only if it contains no lines; a graph is a forest (or, has point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, and Hedetniemi [2] defined a graph to have property Pn if it contains no subgraph homeomorphic from the complete graph Kn+1 or the complete bipartite graphFor the first four natural numbers n, the graphs with property Pn are exactly the totally disconnected graphs, forests, outerplanar and planar graphs, respectively. This unification suggested the extension of many results known to hold for one of the above four classes of graphs to one or more of the remaining classes.


Author(s):  
Robin Wilson

Graph theory is about collections of points that are joined in pairs, such as a road map with towns connected by roads or a molecule with atoms joined by chemical bonds. ‘Graphs’ revisits the Königsberg bridges problem, the knight’s tour problem, the Gas–Water–Electricity problem, the map-colour problem, the minimum connector problem, and the travelling salesman problem and explains how they can all be considered as problems in graph theory. It begins with an explanation of a graph and describes the complete graph, the complete bipartite graph, and the cycle graph, which are all simple graphs. It goes on to describe trees in graph theory, Eulerian and Hamiltonian graphs, and planar graphs.


2006 ◽  
Vol 15 (01) ◽  
pp. 11-19 ◽  
Author(s):  
RYO NIKKUNI

A generic immersion of a finite graph into the 2-space with p double points is said to be completely distinguishable if any two of the 2p embeddings of the graph into the 3-space obtained from the immersion by giving over/under information to each double point are not ambient isotopic in the 3-space. We show that only non-trivializable graphs and non-planar graphs have a non-trivial completely distinguishable immersion. We give examples of non-trivial completely distinguishable immersions of several non-trivializable graphs, the complete graph on n vertices and the complete bipartite graph on m + n vertices.


1968 ◽  
Vol 20 ◽  
pp. 888-894 ◽  
Author(s):  
Richard K. Guy ◽  
Lowell W. Beineke

The coarseness, c(G), of a graph G is the maximum number of edge-disjoint, non-planar subgraphs of G. We consider only the complete graph, Kp, on p vertices here. For p = 3r, Erdös conjectured that the coarseness was , but it has been shown (1) that1where square brackets denote integer part.


1964 ◽  
Vol 7 (1) ◽  
pp. 35-39 ◽  
Author(s):  
P. Erdös ◽  
J. W. Moon

G(n) denotes a graph of n vertices and Ḡ(n) denotes its complementary graph. In a complete graph every two distinct vertices are joined by an edge. Let Ck(G(n)) denote the number of complete subgraphs of k vertices contained in G(n). Recently it was proved [1] that for every k1where the minimum is over all graphs G(n).


2011 ◽  
Vol 3 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. Ponraj ◽  
J. X. V. Parthipan ◽  
R. Kala

Let G be a (p,q) graph. An injective map ƒ: V (G) →{±1, ±2,...,±p} is called a pair sum labeling if the induced edge function, ƒe: E(G)→Z -{0} defined by ƒe (uv)=ƒ(u)+ƒ(v) is one-one and ƒe(E(G)) is either of the form {±k1, ±k2,…, ±kq/2} or {±k1, ±k2,…, ±k(q-1)/2} {k (q+1)/2} according as q is even or odd. Here we prove that every graph is a subgraph of a connected pair sum graph. Also we investigate the pair sum labeling of some graphs which are obtained from cycles. Finally we enumerate all pair sum graphs of order ≤ 5.Keywords: Cycle; Path; Bistar; Complete graph; Complete bipartite graph; Triangular snake.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.6290                 J. Sci. Res. 3 (2), 321-329 (2011)


2020 ◽  
Vol 29 (6) ◽  
pp. 886-899
Author(s):  
Anita Liebenau ◽  
Yanitsa Pehova

AbstractA diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles. We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular bipartite tournament on 2n ≥ n0 vertices contains a collection of (1/2–ε)n cycles of length at least (2–ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles: for every c > 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n ≥ n0 vertices contains (1−ε)cn edge-disjoint Hamilton cycles.


2020 ◽  
Vol 30 (1) ◽  
pp. 7-22
Author(s):  
Boris A. Pogorelov ◽  
Marina A. Pudovkina

AbstractThe Jevons group AS̃n is an isometry group of the Hamming metric on the n-dimensional vector space Vn over GF(2). It is generated by the group of all permutation (n × n)-matrices over GF(2) and the translation group on Vn. Earlier the authors of the present paper classified the submetrics of the Hamming metric on Vn for n ⩾ 4, and all overgroups of AS̃n which are isometry groups of these overmetrics. In turn, each overgroup of AS̃n is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group AS̃n. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph 2n, the complete bipartite graph K2n−1,2n−1, the halved (n + 1)-cube, the folded (n + 1)-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550040 ◽  
Author(s):  
P. C. Lisna ◽  
M. S. Sunitha

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by [Formula: see text], is the maximum integer [Formula: see text] such that G admits a b-coloring with [Formula: see text] colors. In this paper we introduce a new concept, the b-chromatic sum of a graph [Formula: see text], denoted by [Formula: see text] and is defined as the minimum of sum of colors [Formula: see text] of [Formula: see text] for all [Formula: see text] in a b-coloring of [Formula: see text] using [Formula: see text] colors. Also obtained the b-chromatic sum of paths, cycles, wheel graph, complete graph, star graph, double star graph, complete bipartite graph, corona of paths and corona of cycles.


Sign in / Sign up

Export Citation Format

Share Document