Solvable and Nilpotent Subgroups of GL(n,qm)

1982 ◽  
Vol 34 (5) ◽  
pp. 1097-1111 ◽  
Author(s):  
Thomas R. Wolf

Let V ≠ 0 be a vector space of dimension n over a finite field of order qm for a prime q. Of course, GL(n, qm) denotes the group of -linear transformations of V. With few exceptions, GL(n, qm) is non-solvable. How large can a solvable subgroup of GL(n, qm) be? The order of a Sylow-q-subgroup Q of GL(n, qm) is easily computed. But Q cannot act irreducibly nor completely reducibly on V.Suppose that G is a solvable, completely reducible subgroup of GL(n, qm). Huppert ([9], Satz 13, Satz 14) bounds the order of a Sylow-q-subgroup of G, and Dixon ([5], Corollary 1) improves Huppert's bound. Here, we show that |G| ≦ q3nm = |V|3. In fact, we show thatwhere

2017 ◽  
Vol 103 (3) ◽  
pp. 402-419 ◽  
Author(s):  
WORACHEAD SOMMANEE ◽  
KRITSADA SANGKHANAN

Let$V$be a vector space and let$T(V)$denote the semigroup (under composition) of all linear transformations from$V$into$V$. For a fixed subspace$W$of$V$, let$T(V,W)$be the semigroup consisting of all linear transformations from$V$into$W$. In 2008, Sullivan [‘Semigroups of linear transformations with restricted range’,Bull. Aust. Math. Soc.77(3) (2008), 441–453] proved that$$\begin{eqnarray}\displaystyle Q=\{\unicode[STIX]{x1D6FC}\in T(V,W):V\unicode[STIX]{x1D6FC}\subseteq W\unicode[STIX]{x1D6FC}\} & & \displaystyle \nonumber\end{eqnarray}$$is the largest regular subsemigroup of$T(V,W)$and characterized Green’s relations on$T(V,W)$. In this paper, we determine all the maximal regular subsemigroups of$Q$when$W$is a finite-dimensional subspace of$V$over a finite field. Moreover, we compute the rank and idempotent rank of$Q$when$W$is an$n$-dimensional subspace of an$m$-dimensional vector space$V$over a finite field$F$.


1961 ◽  
Vol 4 (3) ◽  
pp. 239-242
Author(s):  
B.N. Moyls ◽  
N.A. Khan

In 1949 Ky Fan [1] proved the following result: Let λ1…λn be the eigenvalues of an Hermitian operator H on an n-dimensional vector space Vn. If x1, …, xq is an orthonormal set in V1, and q is a positive integer such n that 1 ≤ q ≤ n, then1


1967 ◽  
Vol 19 ◽  
pp. 281-290 ◽  
Author(s):  
E. P. Botta

Let Mm(F) be the vector space of m-square matriceswhere F is a field; let f be a function on Mm(F) to some set R. It is of interest to determine the linear maps T: Mm(F) → Mm(F) which preserve the values of the function ƒ; i.e., ƒ(T(X)) = ƒ(X) for all X. For example, if we take ƒ(X) to be the rank of X, we are asking for a determination of the types of linear operations on matrices that preserve rank. Other classical invariants that may be taken for f are the determinant, the set of eigenvalues, and the rth elementary symmetric function of the eigenvalues. Dieudonné (1), Hua (2), Jacobs (3), Marcus (4, 6, 8), Mori ta (9), and Moyls (6) have conducted extensive research in this area. A class of matrix functions that have recently aroused considerable interest (4; 7) is the generalized matrix functions in the sense of I. Schur (10).


1961 ◽  
Vol 13 ◽  
pp. 614-624 ◽  
Author(s):  
H. Kestelman

It is well known that any set of four anticommuting involutions (see §2) in a four-dimensional vector space can be represented by the Dirac matrices(1)where the B1,r are the Pauli matrices(2)(See (1) for a general exposition with applications to Quantum Mechanics.) One formulation, which we shall call the Dirac-Pauli theorem (2; 3; 1), isTheorem 1. If M1,M2, M3, M4 are 4 X 4 matrices satisfyingthen there is a matrix T such thatand T is unique apart from an arbitrary numerical multiplier.


1960 ◽  
Vol 3 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Marvin Marcus ◽  
Nisar A. Khan

In a recent series of papers [3,4,5], H. Zassenhaus considered the structure of those linear transformations T on real 4-space, R4, into itself that preserve the quadratic form . That is,1.1Define a function ϕ on R4 to the space M 2 of 2-square matrices over the complex numbers as follows:1.2Let G2 be the vector space of matrices generated by all real linear combinations of1.3


1977 ◽  
Vol 29 (5) ◽  
pp. 937-946
Author(s):  
Hock Ong

Let F be a field, F* be its multiplicative group and Mn(F) be the vector space of all n-square matrices over F. Let Sn be the symmetric group acting on the set {1, 2, … , n}. If G is a subgroup of Sn and λ is a function on G with values in F, then the matrix function associated with G and X, denoted by Gλ, is defined byand letℐ(G, λ) = { T : T is a linear transformation of Mn(F) to itself and Gλ(T(X)) = Gλ(X) for all X}.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.


1998 ◽  
Vol 57 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Rachel Thomas

In this paper we consider the characterisation of those elements of a transformation semigroup S which are a product of two proper idempotents. We give a characterisation where S is the endomorphism monoid of a strong independence algebra A, and apply this to the cases where A is an arbitrary set and where A is an arbitrary vector space. The results emphasise the analogy between the idempotent generated subsemigroups of the full transformation semigroup of a set and of the semigroup of linear transformations from a vector space to itself.


Sign in / Sign up

Export Citation Format

Share Document