complete matrix
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Patrizia Pfohl ◽  
Christian Roth ◽  
Lars Meyer ◽  
Ute Heinemeyer ◽  
Till Gruendling ◽  
...  

AbstractAlthough microplastics are ubiquitous in today’s natural environments, our understanding of the materials, quantities, and particle sizes involved remains limited. The recovery of microplastics from different types of environmental matrices requires standardized matrix digestion protocols that allow inter-laboratory comparisons and that have no effect on the polymers themselves. A number of commonly used digestion methods rely on oxidation with concentrated hydrogen peroxide solutions to remove organic matter from the matrix. However, this can alter the nature of polymers through hydrolysis and often does not lead to a complete matrix removal. We have therefore investigated the use of two altered matrix digestion protocols, an acidic (Fenton) protocol and a new alkaline (Basic Piranha) protocol, focusing mainly on the effect on biodegradable polymers (polylactide, polybutylene adipate terephthalate, polybutylene succinate) and polymers with known degradation pathways via hydrolysis (thermoplastic polyurethanes, polyamide). Comparing the initial surface textures, chemical compositions, and particle size distributions with those obtained after digestion revealed that the Fenton protocol left most of the polymers unchanged. The ferrous residue that remains following Fenton digestion had no effect on either the polymer composition or the particle size distribution, but could disturb further analytics (e.g. Raman microscopy due to auto-fluorescence). While increasing the chance of complete matrix removal, the more powerful Basic Piranha protocol is also more likely to affect the polymer properties: Polylactide polymers in particular showed signs of degradation under alkaline digestion (reduced polylactide content, holes in the polymer matrix), indicating the unsuitability of the Basic Piranha protocol in this specific case. Polyamide, however, remained stable during the Basic Piranha treatment, and the surface chemistry, the particle size as well as the molar mass distribution of the investigated thermoplastic polyurethanes were also not affected. Hence, this protocol offers a powerful alternative for microplastic analysis with focus on particle size in more complex environmental matrices (e.g. removal of cellulose in soil), while avoiding ferrous Fenton residue. Unexpectedly, also tire rubber, a frequent target analyte in microplastic monitoring, was found to be susceptible to artefact structures by both oxidation protocols. In summary, controls for the specific combination of polymer and sample preparation protocol are highly recommended to select the most fitting protocol. Here selected suitable combinations are reported.


2021 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Kwek Benny Kurniawan ◽  
YB Dwi Setianto

GPU or Graphic Processing Unit can be used on many platforms in general GPUs are used for rendering graphics but now GPUs are general purpose parallel processors with support for easily accessible programming interfaces and industry standard languages such as C, Python and Fortran. In this study, the authors will compare CPU and GPU for completing some matrix calculation. To compare between CPU and GPU, the authors have done some testing to observe the use of Processing Unit, memory and computing time to complete matrix calculations by changing matrix sizes and dimensions. The results of tests that have been done shows asynchronous GPU is faster than sequential. Furthermore, thread for GPU needs to be adjusted to achieve efficiency in GPU load.


2021 ◽  
Vol 23 (4) ◽  
pp. 97-110
Author(s):  
Andrey N. Bespalov ◽  
Alexander L. Buzov ◽  
Dmitry S. Klyuev ◽  
Anatoly M. Neshcheret

This article is devoted to the study of the possibilities of increasing spectral efficiency in MIMO systems by using antennas with substrates of biisotropic and bianisotropic chiral metamaterials and various types of fractal emitters, in particular, fractal structures in the form of a Sierpinski triangle, Koch and Gilbert curves, as well as a dipole triangular antenna of complex configuration FRM. The spectral efficiency was calculated by using one of the variations of the Shannon formula, which includes a complete matrix of Z-parameters. In turn, this matrix was determined using the software package of electrodynamic modeling. It is shown that the use of such antennas with the fractal geometry of the emitters located on chiral substrates reduces the mutual influence between the emitters, and, in turn, increases the spectral efficiency in several frequency ranges compared to traditional solutions.


Author(s):  
A. V. Ivashkevich ◽  
Ya. A. Voynova ◽  
E. M. Оvsiyuk ◽  
V. V. Kisel ◽  
V. M. Red’kov

The relativistic wave equation is well-known for a spin 3/2 particle proposed by W. E. Pauli and M. E. Fierz and based on the 16-component wave function with the transformation properties of the vector-bispinor. In this paper, we investigated the nonrelativistic approximation in this theory. Starting with the first-order equation formalism and representation of Pauli – Fierz equation in the Petras basis, also applying the method of generalized Kronecker symbols and elements of the complete matrix algebras, and decomposing the wave function into large and small nonrelativistic constituents with the help of projective operators, we have derived a Pauli-like equation for the 4-component wave function describing the non-relativistic particle with a 3/2 spin.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fei Yang ◽  
Jiazhi Du ◽  
Jiying Lang ◽  
Weigang Lu ◽  
Lei Liu ◽  
...  

Electrocardiogram (ECG) signal is critical to the classification of cardiac arrhythmia using some machine learning methods. In practice, the ECG datasets are usually with multiple missing values due to faults or distortion. Unfortunately, many established algorithms for classification require a fully complete matrix as input. Thus it is necessary to impute the missing data to increase the effectiveness of classification for datasets with a few missing values. In this paper, we compare the main methods for estimating the missing values in electrocardiogram data, e.g., the “Zero method”, “Mean method”, “PCA-based method”, and “RPCA-based method” and then propose a novel KNN-based classification algorithm, i.e., a modified kernel Difference-Weighted KNN classifier (MKDF-WKNN), which is fit for the classification of imbalance datasets. The experimental results on the UCI database indicate that the “RPCA-based method” can successfully handle missing values in arrhythmia dataset no matter how many values in it are missing and our proposed classification algorithm, MKDF-WKNN, is superior to other state-of-the-art algorithms like KNN, DS-WKNN, DF-WKNN, and KDF-WKNN for uneven datasets which impacts the accuracy of classification.


2020 ◽  
Vol 34 (04) ◽  
pp. 3906-3913
Author(s):  
Robert Ganian ◽  
Iyad Kanj ◽  
Sebastian Ordyniak ◽  
Stefan Szeider

We consider a fundamental matrix completion problem where we are given an incomplete matrix and a set of constraints modeled as a CSP instance. The goal is to complete the matrix subject to the input constraints and in such a way that the complete matrix can be clustered into few subspaces with low rank. This problem generalizes several problems in data mining and machine learning, including the problem of completing a matrix into one with minimum rank. In addition to its ubiquitous applications in machine learning, the problem has strong connections to information theory, related to binary linear codes, and variants of it have been extensively studied from that perspective. We formalize the problem mentioned above and study its classical and parameterized complexity. We draw a detailed landscape of the complexity and parameterized complexity of the problem with respect to several natural parameters that are desirably small and with respect to several well-studied CSP fragments.


2019 ◽  
Vol 286 (1917) ◽  
pp. 20192426 ◽  
Author(s):  
Jesús A. Ballesteros ◽  
Carlos E. Santibáñez López ◽  
Ľubomír Kováč ◽  
Efrat Gavish-Regev ◽  
Prashant P. Sharma

The miniaturized arachnid order Palpigradi has ambiguous phylogenetic affinities owing to its odd combination of plesiomorphic and derived morphological traits. This lineage has never been sampled in phylogenomic datasets because of the small body size and fragility of most species, a sampling gap of immediate concern to recent disputes over arachnid monophyly. To redress this gap, we sampled a population of the cave-inhabiting species Eukoenenia spelaea from Slovakia and inferred its placement in the phylogeny of Chelicerata using dense phylogenomic matrices of up to 1450 loci, drawn from high-quality transcriptomic libraries and complete genomes. The complete matrix included exemplars of all extant orders of Chelicerata. Analyses of the complete matrix recovered palpigrades as the sister group of the long-branch order Parasitiformes (ticks) with high support. However, sequential deletion of long-branch taxa revealed that the position of palpigrades is prone to topological instability. Phylogenomic subsampling approaches that maximized taxon or dataset completeness recovered palpigrades as the sister group of camel spiders (Solifugae), with modest support. While this relationship is congruent with the location and architecture of the coxal glands, a long-forgotten character system that opens in the pedipalpal segments only in palpigrades and solifuges, we show that nodal support values in concatenated supermatrices can mask high levels of underlying topological conflict in the placement of the enigmatic Palpigradi.


2019 ◽  
Vol 9 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Alami Anouar ◽  
Khadim Dioukhane ◽  
Younas Aouine ◽  
Mohamed El Omari ◽  
Lahcen El Ammari ◽  
...  

The organo-amino compound of title 2-(4-methyl-2-phenyl-4,5-dihydro-oxazol-4-ylmethyl)-isoindole-1,3-dione was synthesized by the mixture of (4-methyl-2-phenyl-4,5-dihydrooxazol-4-yl)methyl-4-methylbenzenesulfonate and isoindoline-1,3-dione in N,N-dimethylformamide with a yield of around 65%. The structural study of the compound, C19H16N2O3, is realized using single crystal X-Ray diffraction which shows that this compound crystallizes in the monoclinic system (P21/c, Z = 4) with the unit cell parameters: a = 14.3728 (13) Ã…, b = 9.6829 (10) Ã…, c = 11.8964 (12) Ã… and β = 107.384 (3). The refinement of the structure by the least-squares method with complete matrix leads to the following reliability factors R/Rw are 0.044/0.130.In the crystal, the molecules are linked together by hydrogen bonds and π…π interactions.The Infrared spectroscopic studies show the bands confirming the presence of the groups C=O, C-O, C-N, -CH3, -CH2 and =CH. 


2019 ◽  
Vol 141 (26) ◽  
pp. 10225-10235 ◽  
Author(s):  
Christopher J. Gerry ◽  
Mathias J. Wawer ◽  
Paul A. Clemons ◽  
Stuart L. Schreiber

Sign in / Sign up

Export Citation Format

Share Document