On The Factorization of Partial Differential Equations

1987 ◽  
Vol 39 (4) ◽  
pp. 825-834 ◽  
Author(s):  
W. Dale Brownawell

In [4] N. Steinmetz used Nevanlinna theory to establish remarkably versatile theorems on the factorization of ordinary differential equations which implied numerous previous results of various authors. (Here factorization is taken in the sense of function composition as introduced by F. Gross in [2].) The thrust of Steinmetz’ central results on factorization is that if g(z) is entire and f(z) is meromorphic in C such that the composite fog satisfies an algebraic differential equation, then so do f(z) and, degenerate cases aside, g(z). In addition, the more one knows about the equation for fog (e.g. degree, weight, autonomy), the more one can conclude about the equations for f and g.In this note we generalize Steinmetz’ work to show the following:a) Steinmetz’ two basic results, Satz 1 and Korollar 1 of [4] can be seen as one-variable specializations of a single two variable result, andb) the function g(z) can itself be allowed to be a function of several variables.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. G. L. Leach ◽  
K. S. Govinder ◽  
K. Andriopoulos

Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry with one or more of the coefficient functions containing an integral. Recent work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper we show that the same phenomenon can be observed in the reduction of ordinary differential equations and in a sense loosen the interpretation of hidden symmetries.


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


Author(s):  
Michael Doebeli

This chapter discusses partial differential equation models. Partial differential equations can describe the dynamics of phenotype distributions of polymorphic populations, and they allow for a mathematically concise formulation from which some analytical insights can be obtained. It has been argued that because partial differential equations can describe polymorphic populations, results from such models are fundamentally different from those obtained using adaptive dynamics. In partial differential equation models, diversification manifests itself as pattern formation in phenotype distribution. More precisely, diversification occurs when phenotype distributions become multimodal, with the different modes corresponding to phenotypic clusters, or to species in sexual models. Such pattern formation occurs in partial differential equation models for competitive as well as for predator–prey interactions.


1927 ◽  
Vol 46 ◽  
pp. 126-135 ◽  
Author(s):  
E. T. Copson

A partial differential equation of physics may be defined as a linear second-order equation which is derivable from a Hamiltonian Principle by means of the methods of the Calculus of Variations. This principle states that the actual course of events in a physical problem is such that it gives to a certain integral a stationary value.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1853
Author(s):  
Christiane Quesne

We show that the method developed by Gangopadhyaya, Mallow, and their coworkers to deal with (translational) shape invariant potentials in supersymmetric quantum mechanics and consisting in replacing the shape invariance condition, which is a difference-differential equation, which, by an infinite set of partial differential equations, can be generalized to deformed shape invariant potentials in deformed supersymmetric quantum mechanics. The extended method is illustrated by several examples, corresponding both to ℏ-independent superpotentials and to a superpotential explicitly depending on ℏ.


1863 ◽  
Vol 12 ◽  
pp. 420-424

Jacobi in a posthumous memoir, which has only this year appeared, has developed two remarkable methods (agreeing in their general character, but differing in details) of solving non-linear partial differential equations of the first order, and has applied them in connexion with that theory of the differential equations of dynamics which was established by Sir W. R. Hamilton in the 'Philosophical Transactions’ for 1834-35. The knowledge, indeed, that the solution of the equation of a dynamical problem is involved in the discovery of a single central function, defined by a single partial differential equation of the first order, does not appear to have been hitherto (perhaps it will never be) very fruitful in practical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Falei Wang

We introduce a type of fully nonlinear path-dependent (parabolic) partial differential equation (PDE) in which the pathωton an interval [0,t] becomes the basic variable in the place of classical variablest,x∈[0,T]×ℝd. Then we study the comparison theorem of fully nonlinear PPDE and give some of its applications.


1913 ◽  
Vol 32 ◽  
pp. 164-174
Author(s):  
A. Gray

The present paper contains the first part of a series of notes on general dynamics which, if it is found worth while, may be continued. In § 1 I have shown how the first Hamiltonian differential equation is led up to in a natural and elementary manner from the canonical equations of motion for the most general case, that in which the time t appears explicitly in the function usually denoted by H. The condition of constancy of energy is therefore not assumed. In § 2 it is proved that the partial derivatives of the complete integral of Hamilton's equation with respect to the constants which enter into the specification of that integral do not vary with the time, so that these derivatives equated to constants are the integral equations of motion of the system.*


1992 ◽  
Vol 44 (6) ◽  
pp. 1317-1338 ◽  
Author(s):  
Zhimin Yan

AbstractWe study a class of generalized hypergeometric functions in several variables introduced by A. Korânyi. It is shown that the generalized Gaussian hypergeometric function is the unique solution of a system partial differential equations. Analogues of some classical results such as Kummer relations and Euler integral representations are established. Asymptotic behavior of generalized hypergeometric functions is obtained which includes some known estimates.


Sign in / Sign up

Export Citation Format

Share Document