Twisted Hasse-Weil L-Functions and the Rank of Mordell-Weil Groups

1997 ◽  
Vol 49 (4) ◽  
pp. 749-771 ◽  
Author(s):  
Lawrence Howe

AbstractFollowing a method outlined by Greenberg, root number computations give a conjectural lower bound for the ranks of certain Mordell–Weil groups of elliptic curves. More specifically, for PQn a PGL2(Z/pnZ)–extension of Q and E an elliptic curve over Q, define the motive E ⊗ ρ, where ρ is any irreducible representation of Gal(PQn /Q). Under some restrictions, the root number in the conjectural functional equation for the L-function of E ⊗ ρ is easily computable, and a ‘–1’ implies, by the Birch and Swinnerton–Dyer conjecture, that ρ is found in E(PQn) ⊗ C. Summing the dimensions of such ρ gives a conjectural lower bound ofp2n–p2n–1–p–1for the rank of E(PQn).

2010 ◽  
Vol 53 (1) ◽  
pp. 207-210
Author(s):  
CRISTIAN VIRDOL

Let E be an elliptic curve defined over a number field F, and let Σ be a finite set of finite places of F. Let L(s, E, ψ) be the L-function of E twisted by a finite-order Hecke character ψ of F. It is conjectured that L(s, E, ψ) has a meromorphic continuation to the entire complex plane and satisfies a functional equation s ↔ 2 − s. Then one can define the so called minimal order of vanishing ats = 1 of L(s, E, ψ), denoted by m(E, ψ) (see Section 2 for the definition).


Author(s):  
YUKAKO KEZUKA

AbstractWe study infinite families of quadratic and cubic twists of the elliptic curveE=X0(27). For the family of quadratic twists, we establish a lower bound for the 2-adic valuation of the algebraic part of the value of the complexL-series ats=1, and, for the family of cubic twists, we establish a lower bound for the 3-adic valuation of the algebraic part of the sameL-value. We show that our lower bounds are precisely those predicted by the celebrated conjecture of Birch and Swinnerton-Dyer.


Author(s):  
Wan Lee ◽  
Myungjun Yu

Let [Formula: see text] be an elliptic curve defined over a number field [Formula: see text]. Suppose that [Formula: see text] has complex multiplication over [Formula: see text], i.e. [Formula: see text] is an imaginary quadratic field. With the aid of CM theory, we find elliptic curves whose quadratic twists have a constant root number.


2014 ◽  
Vol 10 (05) ◽  
pp. 1191-1217 ◽  
Author(s):  
Zane Kun Li

A weaker form of a 1979 conjecture of Goldfeld states that for every elliptic curve E/ℚ, a positive proportion of its quadratic twists E(d) have rank 1. Using tools from Galois cohomology, we give criteria on E and d which force a positive proportion of the quadratic twists of E to have 3-Selmer rank 1 and global root number -1. We then give four nonisomorphic infinite families of elliptic curves Em,n which satisfy these criteria. Conditional on the rank part of the Birch and Swinnerton-Dyer conjecture, this verifies the aforementioned conjecture for infinitely many elliptic curves. Our elliptic curves are easy to give explicitly and we state precisely which quadratic twists d to use. Furthermore, our methods have the potential of being generalized to elliptic curves over other number fields.


2012 ◽  
Vol 154 (2) ◽  
pp. 303-324 ◽  
Author(s):  
CHERN–YANG LEE

AbstractThis paper studies the compact p∞-Selmer Iwasawa module X(E/F∞) of an elliptic curve E over a False Tate curve extension F∞, where E is defined over ℚ, having multiplicative reduction at the odd prime p. We investigate the p∞-Selmer rank of E over intermediate fields and give the best lower bound of its growth under certain parity assumption on X(E/F∞), assuming this Iwasawa module satisfies the H(G)-Conjecture proposed by Coates–Fukaya–Kato–Sujatha–Venjakob.


2009 ◽  
Vol 05 (05) ◽  
pp. 911-932
Author(s):  
CHRISTOPHE DELAUNAY ◽  
CHRISTIAN WUTHRICH

Let E be an elliptic curve of conductor p. Given a cyclic subgroup C of order p in E[p], we construct a modular point PC on E, called self-point, as the image of (E,C) on X0(p) under the modular parametrization X0(p) → E. We prove that the point is of infinite order in the Mordell–Weil group of E over the field of definition of C. One can deduce a lower bound on the growth of the rank of the Mordell–Weil group in its PGL 2(ℤp)-tower inside ℚ(E[p∞]).


Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


2020 ◽  
Vol 14 (1) ◽  
pp. 339-345
Author(s):  
Taechan Kim ◽  
Mehdi Tibouchi

AbstractIn a recent paper devoted to fault analysis of elliptic curve-based signature schemes, Takahashi et al. (TCHES 2018) described several attacks, one of which assumed an equidistribution property that can be informally stated as follows: given an elliptic curve E over 𝔽q in Weierstrass form and a large subgroup H ⊂ E(𝔽q) generated by G(xG, yG), the points in E(𝔽q) whose x-coordinates are obtained from xG by randomly flipping a fixed, sufficiently long substring of bits (and rejecting cases when the resulting value does not correspond to a point in E(𝔽q)) are close to uniformly distributed among the cosets modulo H. The goal of this note is to formally state, prove and quantify (a variant of) that property, and in particular establish sufficient bounds on the size of the subgroup and on the length of the substring of bits for it to hold. The proof relies on bounds for character sums on elliptic curves established by Kohel and Shparlinski (ANTS–IV).


Author(s):  
Robert F. Brown

AbstractLet $$\phi :X \multimap Y$$ ϕ : X ⊸ Y be an n-valued map of connected finite polyhedra and let $$a \in Y$$ a ∈ Y . Then, $$x \in X$$ x ∈ X is a root of $$\phi $$ ϕ at a if $$a \in \phi (x)$$ a ∈ ϕ ( x ) . The Nielsen root number $$N(\phi : a)$$ N ( ϕ : a ) is a lower bound for the number of roots at a of any n-valued map homotopic to $$\phi $$ ϕ . We prove that if X and Y are compact, connected triangulated manifolds without boundary, of the same dimension, then given $$\epsilon > 0$$ ϵ > 0 , there is an n-valued map $$\psi $$ ψ homotopic to $$\phi $$ ϕ within Hausdorff distance $$\epsilon $$ ϵ of $$\phi $$ ϕ such that $$\psi $$ ψ has finitely many roots at a. We conjecture that if X and Y are q-manifolds without boundary, $$q \ne 2$$ q ≠ 2 , then there is an n-valued map homotopic to $$\phi $$ ϕ that has $$N(\phi : a)$$ N ( ϕ : a ) roots at a. We verify the conjecture when $$X = Y$$ X = Y is a Lie group by employing a fixed point result of Schirmer. As an application, we calculate the Nielsen root numbers of linear n-valued maps of tori.


Sign in / Sign up

Export Citation Format

Share Document