scholarly journals Quadratic twists of elliptic curves with 3-Selmer rank 1

2014 ◽  
Vol 10 (05) ◽  
pp. 1191-1217 ◽  
Author(s):  
Zane Kun Li

A weaker form of a 1979 conjecture of Goldfeld states that for every elliptic curve E/ℚ, a positive proportion of its quadratic twists E(d) have rank 1. Using tools from Galois cohomology, we give criteria on E and d which force a positive proportion of the quadratic twists of E to have 3-Selmer rank 1 and global root number -1. We then give four nonisomorphic infinite families of elliptic curves Em,n which satisfy these criteria. Conditional on the rank part of the Birch and Swinnerton-Dyer conjecture, this verifies the aforementioned conjecture for infinitely many elliptic curves. Our elliptic curves are easy to give explicitly and we state precisely which quadratic twists d to use. Furthermore, our methods have the potential of being generalized to elliptic curves over other number fields.

Author(s):  
Wan Lee ◽  
Myungjun Yu

Let [Formula: see text] be an elliptic curve defined over a number field [Formula: see text]. Suppose that [Formula: see text] has complex multiplication over [Formula: see text], i.e. [Formula: see text] is an imaginary quadratic field. With the aid of CM theory, we find elliptic curves whose quadratic twists have a constant root number.


2019 ◽  
Vol 7 ◽  
Author(s):  
DANIEL KRIZ ◽  
CHAO LI

Given an elliptic curve$E$over$\mathbb{Q}$, a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (respectively 1). We show that this conjecture holds whenever$E$has a rational 3-isogeny. We also prove the analogous result for the sextic twists of$j$-invariant 0 curves. For a more general elliptic curve$E$, we show that the number of quadratic twists of$E$up to twisting discriminant$X$of analytic rank 0 (respectively 1) is$\gg X/\log ^{5/6}X$, improving the current best general bound toward Goldfeld’s conjecture due to Ono–Skinner (respectively Perelli–Pomykala). To prove these results, we establish a congruence formula between$p$-adic logarithms of Heegner points and apply it in the special cases$p=3$and$p=2$to construct the desired twists explicitly. As a by-product, we also prove the corresponding$p$-part of the Birch and Swinnerton–Dyer conjecture for these explicit twists.


1997 ◽  
Vol 49 (4) ◽  
pp. 749-771 ◽  
Author(s):  
Lawrence Howe

AbstractFollowing a method outlined by Greenberg, root number computations give a conjectural lower bound for the ranks of certain Mordell–Weil groups of elliptic curves. More specifically, for PQn a PGL2(Z/pnZ)–extension of Q and E an elliptic curve over Q, define the motive E ⊗ ρ, where ρ is any irreducible representation of Gal(PQn /Q). Under some restrictions, the root number in the conjectural functional equation for the L-function of E ⊗ ρ is easily computable, and a ‘–1’ implies, by the Birch and Swinnerton–Dyer conjecture, that ρ is found in E(PQn) ⊗ C. Summing the dimensions of such ρ gives a conjectural lower bound ofp2n–p2n–1–p–1for the rank of E(PQn).


2009 ◽  
Vol 59 (3) ◽  
Author(s):  
E. Girondo ◽  
G. González-Diez ◽  
E. González-Jiménez ◽  
R. Steuding ◽  
J. Steuding

AbstractGiven any positive integer n, we prove the existence of infinitely many right triangles with area n and side lengths in certain number fields. This generalizes the famous congruent number problem. The proof allows the explicit construction of these triangles; for this purpose we find for any positive integer n an explicit cubic number field ℚ(λ) (depending on n) and an explicit point P λ of infinite order in the Mordell-Weil group of the elliptic curve Y 2 = X 3 − n 2 X over ℚ(λ).


Author(s):  
YUKAKO KEZUKA

AbstractWe study infinite families of quadratic and cubic twists of the elliptic curveE=X0(27). For the family of quadratic twists, we establish a lower bound for the 2-adic valuation of the algebraic part of the value of the complexL-series ats=1, and, for the family of cubic twists, we establish a lower bound for the 3-adic valuation of the algebraic part of the sameL-value. We show that our lower bounds are precisely those predicted by the celebrated conjecture of Birch and Swinnerton-Dyer.


2002 ◽  
Vol 5 ◽  
pp. 7-17 ◽  
Author(s):  
Denis Simon

AbstractThis paper describes an algorithm of 2-descent for computing the rank of an elliptic curve without 2-torsion, defined over a general number field. This allows one, in practice, to deal with fields of degree from 1 to 5.


Author(s):  
Robert J Lemke Oliver ◽  
Frank Thorne

Abstract Given an elliptic curve $E/\mathbb{Q}$, it is a conjecture of Goldfeld that asymptotically half of its quadratic twists will have rank zero and half will have rank one. Nevertheless, higher rank twists do occur: subject to the parity conjecture, Gouvêa and Mazur constructed $X^{1/2-\epsilon }$ twists by discriminants up to $X$ with rank at least two. For any $d\geq 3$, we build on their work to consider the rank growth of $E$ in degree $d$$S_d$-extensions of $\mathbb{Q}$ with discriminant up to $X$. We prove that there are at least $X^{c_d-\epsilon }$ such fields where the rank grows, where $c_d$ is a positive constant that tends to $1/4$ as $d\to \infty $. Moreover, subject to a suitable parity conjecture, we obtain the same result for fields for which the rank grows by at least two.


1986 ◽  
Vol 104 ◽  
pp. 43-53 ◽  
Author(s):  
Kay Wingberg

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic of an elliptic curve E defined over a number field F with complex multiplication by an imaginary quadratic field K by using p-adic techniques, which combine the classical descent of Mordell and Weil with ideas of Iwasawa’s theory of Zp-extensions of number fields. In a special case they consider a non-cyclotomic Zp-extension F∞ defined via torsion points of E and a certain Iwasawa module attached to E/F, which can be interpreted as an abelian Galois group of an extension of F∞. We are interested in the corresponding non-abelian Galois group and we want to show that the whole situation is quite analogous to the case of the cyclotomic Zp-extension (which is generated by torsion points of Gm).


2006 ◽  
Vol 02 (02) ◽  
pp. 267-288 ◽  
Author(s):  
E. KOWALSKI

We prove quantitative upper bounds for the number of quadratic twists of a given elliptic curve E/Fq(C) over a function field over a finite field that have rank ≥ 2, and for their average rank. The main tools are constructions and results of Katz and uniform versions of the Chebotarev density theorem for varieties over finite fields. Moreover, we conditionally derive a bound in some cases where the degree of the conductor is unbounded.


Sign in / Sign up

Export Citation Format

Share Document