On Random Variables which have the same Distribution as their Reciprocals

1965 ◽  
Vol 8 (6) ◽  
pp. 819-824 ◽  
Author(s):  
V. Seshadri

The motivation for this paper lies in the following remarkable property of certain probability distributions. The distribution law of the r. v. (random variable) X is exactly the same as that of 1/ X, and in the case of a r. v. with p. d. f. (probability density function) f(x; a, b) where a, b are parameters, the p. d. f. of 1/X is f(x; b, a). In the latter case the p. d. f. of the reciprocal is obtained from the p. d. f. of X by merely switching the parameters. The existence of random variables with this property is perhaps familiar to statisticians, as is evidenced by the use of the classical 'F' distribution. The Cauchy law is yet another example which illustrates this property. It seems, therefore, reasonable to characterize this class of random variables by means of this rather interesting property.

2021 ◽  
Vol 54 (2) ◽  
pp. 99-121
Author(s):  
Yogendra P. Chaubey ◽  
Nhat Linh Vu

In this paper, we are interested in estimating the entropy of a non-negative random variable. Since the underlying probability density function is unknown, we propose the use of the Poisson smoothed histogram density estimator to estimate the entropy. To study the per- formance of our estimator, we run simulations on a wide range of densities and compare our entropy estimators with the existing estimators based on different approaches such as spacing estimators. Furthermore, we extend our study to residual entropy estimators which is the entropy of a random variable given that it has been survived up to time $t$.


Author(s):  
V. S. Huzurbazar

Let f(x, αi) be the probability density function of a distribution depending on n parameters αi(i = 1,2, …, n). Then following Jeffreys(1) we shall say that the parameters αi are orthogonal if


Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Dario Grana

Rock physics models are physical equations that map petrophysical properties into geophysical variables, such as elastic properties and density. These equations are generally used in quantitative log and seismic interpretation to estimate the properties of interest from measured well logs and seismic data. Such models are generally calibrated using core samples and well log data and result in accurate predictions of the unknown properties. Because the input data are often affected by measurement errors, the model predictions are often uncertain. Instead of applying rock physics models to deterministic measurements, I propose to apply the models to the probability density function of the measurements. This approach has been previously adopted in literature using Gaussian distributions, but for petrophysical properties of porous rocks, such as volumetric fractions of solid and fluid components, the standard probabilistic formulation based on Gaussian assumptions is not applicable due to the bounded nature of the properties, the multimodality, and the non-symmetric behavior. The proposed approach is based on the Kumaraswamy probability density function for continuous random variables, which allows modeling double bounded non-symmetric distributions and is analytically tractable, unlike the Beta or Dirichtlet distributions. I present a probabilistic rock physics model applied to double bounded continuous random variables distributed according to a Kumaraswamy distribution and derive the analytical solution of the posterior distribution of the rock physics model predictions. The method is illustrated for three rock physics models: Raymer’s equation, Dvorkin’s stiff sand model, and Kuster-Toksoz inclusion model.


Author(s):  
Chi-Hua Chen ◽  
Fangying Song ◽  
Feng-Jang Hwang ◽  
Ling Wu

To generate a probability density function (PDF) for fitting probability distributions of real data, this study proposes a deep learning method which consists of two stages: (1) a training stage for estimating the cumulative distribution function (CDF) and (2) a performing stage for predicting the corresponding PDF. The CDFs of common probability distributions can be adopted as activation functions in the hidden layers of the proposed deep learning model for learning actual cumulative probabilities, and the differential equation of trained deep learning model can be used to estimate the PDF. To evaluate the proposed method, numerical experiments with single and mixed distributions are performed. The experimental results show that the values of both CDF and PDF can be precisely estimated by the proposed method.


Author(s):  
Robert J Marks II

In this Chapter, we present application of Fourier analysis to probability, random variables and stochastic processes [1089, 1097, 1387, 1329]. Arandom variable, X, is the assignment of a number to the outcome of a random experiment. We can, for example, flip a coin and assign an outcome of a heads as X = 1 and a tails X = 0. Often the number is equated to the numerical outcome of the experiment, such as the number of dots on the face of a rolled die or the measurement of a voltage in a noisy circuit. The cumulative distribution function is defined by FX(x) = Pr[X ≤ x]. (4.1) The probability density function is the derivative fX(x) = d /dxFX(x). Our treatment of random variables focuses on use of Fourier analysis. Due to this viewpoint, the development we use is unconventional and begins immediately in the next section with discussion of properties of the probability density function.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Baizhan Xia ◽  
Dejie Yu

To calculate the probability density function of the response of a random acoustic field, a change-of-variable perturbation stochastic finite element method (CVPSFEM), which integrates the perturbation stochastic finite element method (PSFEM) and the change-of-variable technique in a unified form, is proposed. In the proposed method, the response of a random acoustic field is approximated as a linear function of the random variables based on a first order stochastic perturbation analysis. According to the linear relationship between the response and the random variables, the formal expression of the probability density function of the response of a random acoustic field is obtained by the change-of-variable technique. The numerical examples on a two-dimensional (2D) acoustic tube and a three-dimensional (3D) acoustic cavity of an automobile cabin verify the accuracy and efficiency of the proposed method. Hence, the proposed method can be considered as an effective method to quantify the effects of the parametric randomness of a random acoustic field on the sound pressure response.


1968 ◽  
Vol 64 (2) ◽  
pp. 481-483 ◽  
Author(s):  
J. K. Wani

In this paper we give a characterization theorem for a subclass of the exponential family whose probability density function is given bywhere a(x) ≥ 0, f(ω) = ∫a(x) exp (ωx) dx and ωx is to be interpreted as a scalar product. The random variable X may be an s-vector. In that case ω will also be an s-vector. For obvious reasons we will call (1) as the linear exponential family. It is easy to verify that the moment generating function (m.g.f.) of (1) is given by


2008 ◽  
Vol 41 (3) ◽  
Author(s):  
Arif Rafiq ◽  
Nazir Ahmad Mir ◽  
Fiza Zafar

AbstractWe establish here an inequality of Ostrowski type for a random variable whose probability density function belongs to L


Sign in / Sign up

Export Citation Format

Share Document