A Counterexample to a Conjecture of D.F. Sanderson

1966 ◽  
Vol 9 (4) ◽  
pp. 517-517 ◽  
Author(s):  
Israel Kleiner

In [2, p. 511] Sanderson has shown that if every Large left ideal of a ring R with identity contains a regular element, and if the regular elements in R satisfy Ore's condition, then the complete (Utumi's) ring of quotients coincides with the classical ring of quotients. He conjectured that the above conditions are also necessary. The following is a counter example.

1973 ◽  
Vol 14 (2) ◽  
pp. 136-144
Author(s):  
M. S. Vijayakumar

This paper establishes a relationship (Theorem 4.1) between the approaches of A. C. Thompson [8, 9] and E. G. Effros [2] to the representation of simplex algebras, that is, real unital Banach algebras that are simplex spaces with the unit for order identity. It proves that the (nonempty) interior of the associated cone is contained in the principal component of the set of all regular elements of the algebra. It also conjectures that each maximal ideal (in the order sense—see below) of a simplex algebra contains a maximal left ideal of the algebra. This conjecture and other aspects of the relationship are illustrated by considering algebras of n × n real matrices.


Author(s):  
Umashankara Kelathaya ◽  
Savitha Varkady ◽  
Manjunatha Prasad Karantha

In this paper, the notion of “strongly unit regular element”, for which every reflexive generalized inverse is associated with an inverse complement, is introduced. Noting that every strongly unit regular element is unit regular, some characterizations of unit regular elements are obtained in terms of inverse complements and with the help of minus partial order. Unit generalized inverses of given unit regular element are characterized as sum of reflexive generalized inverses and the generators of its annihilators. Surprisingly, it has been observed that the class of strongly regular elements and unit regular elements are the same. Also, several classes of generalized inverses are characterized in terms of inverse complements.


1986 ◽  
Vol 28 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Victoria Gould

Several definitions of a semigroup of quotients have been proposed and studied by a number of authors. For a survey, the reader may consult Weinert's paper [8]. The motivation for many of these concepts comes from ring theory and the various notions of rings of quotients. We are concerned in this paper with an analogue of the classical ring of quotients, introduced by Fountain and Petrich in [3].


1971 ◽  
Vol 14 (4) ◽  
pp. 517-529 ◽  
Author(s):  
John K. Luedeman

AbstractSanderson (Canad. Math. Bull., 8 (1965), 505–513), considering a nonempty collection Σ of left ideals of a ring R, with unity, defined the concepts of “Σ-injective module” and “Σ-essential extension” for unital left modules. Letting Σ be an idempotent topologizing set (called a σ-set below) Σanderson proved the existence of a “Σ-injective hull” for any unital left module and constructed an Utumi Σ-quotient ring of R as the bicommutant of the Σ-injective hull of RR. In this paper, we extend the concepts of “Σinjective module”, “Σ-essentialextension”, and “Σ-injective hull” to modules over arbitrary rings. An overring Σ of a ring R is a Johnson (Utumi) left Σ-quotient ring of R if RR is Σ-essential (Σ-dense) in RS. The maximal Johnson and Utumi Σ-quotient rings of R are constructed similar to the original method of Johnson, and conditions are given to insure their equality. The maximal Utumi Σquotient ring U of R is shown to be the bicommutant of the Σ-injective hull of RR when R has unity. We also obtain a σ-set UΣ of left ideals of U, generated by Σ, and prove that Uis its own maximal Utumi UΣ-quotient ring. A Σ-singular left ideal ZΣ(R) of R is defined and U is shown to be UΣ-injective when Z Σ(R) = 0. The maximal Utumi Σ-quotient rings of matrix rings and direct products of rings are discussed, and the quotient rings of this paper are compared with these of Gabriel (Bull. Soc. Math. France, 90 (1962), 323–448) and Mewborn (Duke Math. J. 35 (1968), 575–580). Our results reduce to those of Johnson and Utumi when 1 ∊ R and Σ is taken to be the set of all left ideals of R.


1984 ◽  
Vol 25 (1) ◽  
pp. 1-5 ◽  
Author(s):  
A. W. Chatters ◽  
S. M. Ginn

The units of a ring R are defined by means of a multiplicative property, but in many cases they generate R additively. For example, it is shown in [5, Proposition 6] that if R is a semi-simple Artinian ring then every element of R is a sum of units if and only if the ring S = ℤ/2ℤ⊕ℤ/2ℤ is not a direct summand of R, where ℤ denotes the ring of integers. The theme of this paper is to investigate the corresponding situation concerning regular elements, i. e. elements which are not zero-divisors. We show that if R is a semi-prime right Goldie ring then every element of R is a sum of regular elements if and only if R does not have the ring S defined above as a direct summand (Corollary 2.9). We also characterise those Noetherian rings R such that every element of R is a sum of regular elements (Theorem 2. 6). The characterisation is in terms of the nature of certain prime factor rings of R, and it is again the presence of the ring S, this time in a particular way as a factor ring of R, which prevents R from being generated by its regular elements. If R has no non-zero Artinian one-sided ideals or if 2 is a regular element of R, then every element of R is a sum of regular elements (Corollaries 2. 5 and 2. 7). As an application we show in Section 3 that, for many Noetherian rings R, the set of elements of R which are divisible by every regular element of R is a two-sided ideal of R.


Author(s):  
Nitin Bisht

An element of a ring [Formula: see text] is said to be [Formula: see text]-precious if it can be written as the sum of a von Neumann regular element, an idempotent element and a nilpotent element. If all the elements of a ring [Formula: see text] are [Formula: see text]-precious, then [Formula: see text] is called an [Formula: see text]-precious ring. We study some basic properties of [Formula: see text]-precious rings. We also characterize von Neumann regular elements in [Formula: see text] when [Formula: see text] is a Euclidean domain and by this argument, we produce elements that are [Formula: see text]-precious but either not [Formula: see text]-clean or not precious.


1983 ◽  
Vol 24 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Bridget B. Baird

If X is a topological space then S(X) will denote the semigroup, under composition, of all continuous functions from X into X. An element f in a semigroup is regular if there is an element g such that fgf = f. The regular elements of S(X) will be denoted by R(X). Elements f and g are inverses of each other if fgf = f and gfg = g. Every regular element has an inverse [1]. If every element in a semigroup has a unique inverse then the semigroup is an inverse semigroup. In this paper we examine maximal inverse subsemigroups of S(X).


1972 ◽  
Vol 24 (6) ◽  
pp. 1122-1128 ◽  
Author(s):  
S. Page

In [1; 2 ; 7] Gabriel, Goldman, and Silver have introduced the notion of a localization of a ring which generalizes the usual notion of a localization of a commutative ring at a prime. These rings may not be local in the sense of having a unique maximal ideal. If we are to obtain information about a ring R from one of its localizations, Qτ (R) say, it seems reasonable that Qτ(R) be a tractable ring. This, of course, is what Goldie, Jans, and Vinsonhaler [4; 3; 8] did in the special case for Q(R) the classical ring of quotients.


2001 ◽  
Vol 12 (07) ◽  
pp. 791-812
Author(s):  
PERE ARA ◽  
GERT K. PEDERSEN ◽  
FRANCESC PERERA

We study the operation E → cl (E) defined on subsets E of a unital ring R, where x ∈ cl (E) if (x + Rb) ∩ E ≠ ∅ for each b in R such that Rx + Rb = R. This operation, which strongly resembles a closure, originates in algebraic K-theory. For any left ideal L we show that cl (L) equals the intersection of the maximal left ideals of R containing L. Moreover, cl (Re) = Re + rad (R) if e is an idempotent in R, and cl (I) = I for a two-sided ideal I precisely when I is semi-primitive in R (i.e. rad (R/I) = 0). We then explore a special class of von Neumann regular elements in R, called persistently regular and characterized by forming an "open" subset Rpr in R, i.e. cl (R\Rpr) = R\Rpr. In fact, R\Rpr = cl (R\Rr), so that Rpr is the "algebraic interior" of the set Rr of regular elements. We show that a regular element x with partial inverse y is persistently regular, if and only if the skew corner (1 - xy)R(1 - yx) is contained in Rr. If I reg (R) denotes the maximal regular ideal in R and [Formula: see text] the set of quasi-invertible elements, defined and studied in [4], we prove that [Formula: see text]. Specializing to C*-algebras we prove that cl (E) coincides with the norm closure of E, when E is one of the five interesting sets R-1, [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], and that Rpr coincides with the topological interior of Rr. We also show that the operation cl respects boundedness, self-adjointness and positivity.


Sign in / Sign up

Export Citation Format

Share Document