A New Family of Irreducible Representations of An

1975 ◽  
Vol 18 (4) ◽  
pp. 543-546 ◽  
Author(s):  
F. W. Lemire

For a simple Lie algebra L over the complex numbers ℂ all irreducible representations admitting a highest weight have been constructed and characterized for example in [3, 6]. In [1] Bouwer considered the family of all irreducible representations of L admitting at least one one-dimensional weight space (this includes, of course, all those having a highest weight space) and showed, by construction, that this is a strictly larger class of representations.

1968 ◽  
Vol 11 (3) ◽  
pp. 399-403 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional.


1994 ◽  
Vol 72 (7-8) ◽  
pp. 326-335 ◽  
Author(s):  
D. J. Britten ◽  
J. Hooper ◽  
F. W. Lemire

In this paper we show that there exist exactly two nonequivalent simple infinite dimensional highest weight Cn modules having the property that every weight space is one dimensional. The tensor products of these modules with any finite-dimensional simple Cn module are proven to be completely reducible and we provide an explicit decomposition for such tensor products. As an application of these decompositions, we obtain two recursion formulas for computing the multiplicities of simple finite dimensional Cn modules. These formulas involve a sum over subgroups of index 2 in the Weyl group of Cn.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
A. Morozov ◽  
M. Reva ◽  
N. Tselousov ◽  
Y. Zenkevich

AbstractWe describe a systematic method to construct arbitrary highest-weight modules, including arbitrary finite-dimensional representations, for any finite dimensional simple Lie algebra $${\mathfrak {g}}$$ g . The Lie algebra generators are represented as first order differential operators in $$\frac{1}{2} \left( \dim {\mathfrak {g}} - \text {rank} \, {\mathfrak {g}}\right) $$ 1 2 dim g - rank g variables. All rising generators $$\mathbf{e}$$ e are universal in the sense that they do not depend on representation, the weights enter (in a very simple way) only in the expressions for the lowering operators $$\mathbf{f}$$ f . We present explicit formulas of this kind for the simple root generators of all classical Lie algebras.


Author(s):  
BIN SHU ◽  
YANG ZENG

Abstract In this paper, we study the center Z of the finite W-algebra $${\mathcal{T}}({\mathfrak{g}},e)$$ associated with a semi-simple Lie algebra $$\mathfrak{g}$$ over an algebraically closed field $$\mathbb{k}$$ of characteristic p≫0, and an arbitrarily given nilpotent element $$e \in{\mathfrak{g}} $$ We obtain an analogue of Veldkamp’s theorem on the center. For the maximal spectrum Specm(Z), we show that its Azumaya locus coincides with its smooth locus of smooth points. The former locus reflects irreducible representations of maximal dimension for $${\mathcal{T}}({\mathfrak{g}},e)$$ .


1968 ◽  
Vol 20 ◽  
pp. 344-361 ◽  
Author(s):  
I. Z. Bouwer

Let L be any simple finite-dimensional Lie algebra (defined over the field K of complex numbers). Cartan's theory of weights is used to define sets of (algebraic) representations of L that can be characterized in terms of left ideals of the universal enveloping algebra of L. These representations, called standard, generalize irreducible representations that possess a dominant weight. The newly obtained representations are all infinite-dimensional. Their study is initiated here by obtaining a partial solution to the problem of characterizing them by means of sequences of elements in K.


2015 ◽  
Vol 17 (1) ◽  
pp. 75-105 ◽  
Author(s):  
Matheus Brito ◽  
Vyjayanthi Chari ◽  
Adriano Moura

We study the classical limit of a family of irreducible representations of the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$. After a suitable twist, the limit is a module for $\mathfrak{sl}_{n+1}[t]$, i.e., for the maximal standard parabolic subalgebra of the affine Lie algebra. Our first result is about the family of prime representations introduced in Hernandez and Leclerc (Duke Math. J.154 (2010), 265–341; Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statitics, Volume 40, pp. 175–193 (2013)), in the context of a monoidal categorification of cluster algebras. We show that these representations specialize (after twisting) to $\mathfrak{sl}_{n+1}[t]$-stable prime Demazure modules in level-two integrable highest-weight representations of the classical affine Lie algebra. It was proved in Chari et al. (arXiv:1408.4090) that a stable Demazure module is isomorphic to the fusion product of stable prime Demazure modules. Our next result proves that such a fusion product is the limit of the tensor product of the corresponding irreducible prime representations of quantum affine $\mathfrak{sl}_{n+1}$.


2001 ◽  
Vol 53 (2) ◽  
pp. 225-243 ◽  
Author(s):  
D. J. Britten ◽  
F. W. Lemire

AbstractLet be a finite dimensional simple Lie algebra over the complex numbers C. Fernando reduced the classification of infinite dimensional simple -modules with a finite dimensional weight space to determining the simple torsion free -modules for of type A or C. Thesemodules were determined by Mathieu and using his work we provide a more elementary construction realizing each one as a submodule of an easily constructed tensor product module.


Sign in / Sign up

Export Citation Format

Share Document