Square-Reduced Residue Systems (Mod r) and Related Arithmetical Functions

1979 ◽  
Vol 22 (2) ◽  
pp. 207-220 ◽  
Author(s):  
R. Sivaramakrishnan

AbstractWe define a square-reduced residue system (mod r) as the set of integers a (mod r) such that the greatest common divisor of a and r, denoted by (a, r), is a perfect square ≥ 1 and contained in a residue system (mod r). This leads to a Class-division of integers (mod r) based on the 'square-free' divisors of r. The number of elements in a square-reduced residue system (mod r) is denoted by b(r). It is shown that(1)(2)In view of (2), b(r) is said to be 'specially multiplicative'. The exponential sum associated with a square-reduced residue system (mod r) is defined bywhere the summation is over a square-reduced residue system (mod r).B(n, r) belongs to a new class of multiplicative functions known as 'Quasi-symmetric functions' and(3)As an application, the sum is considered in terms of the Cauchy-composition of even functions (mod r). It is found to be multiplicative in r. The evaluation of the above sum gives an identity involving Pillai's arithmetic function

1975 ◽  
Vol 20 (3) ◽  
pp. 348-358 ◽  
Author(s):  
T. B. Carroll ◽  
A. A. Gioia

An arithmetic function f is said to be multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1, where (m, n) denotes as usual the greatest common divisor of m and n. Furthermore an arithmetic function is said to be linear (or completely multiplicative) if f(1) = 1 and f(mn) = f(m)f(n) for all positive integers m and n.The Dirichlet convolution of two arithmetic functions f and g is defined by for all n∈Z+. Recall that the set of all multiplicative functions, denoted by M, with this operation is an abelian group.


1967 ◽  
Vol 10 (1) ◽  
pp. 65-73 ◽  
Author(s):  
M. V. Subbarao ◽  
A. A. Gioia

Throughout this paper the arithmetic functions L(n) and w(n) denote respectively the number and product of the distinct prime divisors of the integer n > 1, with L(1) = 0 and w(1) = 1. Also letWe recall that an arithmetic function f(n) is said to be multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1, where (m, n) denotes as usual the greatest common divisor of m and n.


1961 ◽  
Vol 5 (2) ◽  
pp. 67-75 ◽  
Author(s):  
Eckford Cohen

Let σ1(n) denote the sum of the tth powers of the divisors of n, σ(n) = σ1(n). Also placewhere γ is Euler's constant, ζ(s) is the Riemann ζ-function and x ≧ 2. The function Δ(x) is the remainder term arising in the divisor problem for σ((m, n)). Cesàro proved originally [1], [6, p. 328] that Δ(x) = o(x2 log x). More recently in I [2, (3.14)] it was shown by elementary methods that . This estimate was later improved to in II [3, (3.7)]. In the present paper (§ 3) we obtain a much more substantial reduction in the order of Δ(x), by showing that Δ(x) can be expressed in terms of the remainder term in the classical Dirichlet divisor problem. On the basis of well known results for this problem, it follows easily that . The precise statement of the result for σ((m, n)) is contained in (3.2).


1974 ◽  
Vol 26 (6) ◽  
pp. 1351-1355 ◽  
Author(s):  
Ronald J. Leach

Let denote the family of all functions of the formthat are analytic in the unit disc U, f′(z) ≠ 0 in U and f maps U onto a domain of boundary rotation at most . Recently Brannan, Clunie and Kirwan [2] and Aharonov and Friedland [1] have solved the problem of estimating |amp+1| for all , provided m = 1.


1985 ◽  
Vol 28 (4) ◽  
pp. 394-396 ◽  
Author(s):  
D. R. Heath-Brown

AbstractFor suitable polynomials f(x) ∊ ℤ[x] in n variables, of total degree d, it is shown thatThis is, formally, a precise analogue of a theorem of Deligne [1] on exponential sums (mod p). However the proof uses no more than elementary algebraic geometry.


1969 ◽  
Vol 12 (5) ◽  
pp. 615-623 ◽  
Author(s):  
K.V. Menon

The generating series for the elementary symmetric function Er, the complete symmetric function Hr, are defined byrespectively.


1967 ◽  
Vol 10 (5) ◽  
pp. 749-750
Author(s):  
S. L. Segal

Recently Gioia and Subbarao [2] studied essentially the following problem: If g(n) is an arithmetic function, and , then what is the behaviour of H(a, n) defined for each fixed integer a ≥ 2 by1By using Vaidyanathaswamy′s formula [e.g., 1], they obtain an explicit formula for H(a, n) in case g(n) is positive and completely multiplicative (Formula 2.2 of [2]). However, Vaidyanathaswamy′s formula is unnecessary to the proof of this result, which indeed follows more simply without its use, by exploiting a simple idea used earlier by Subbarao [3] (referred to also in the course of [2]).


2005 ◽  
Vol 01 (02) ◽  
pp. 183-192 ◽  
Author(s):  
H. MAIER ◽  
A. SANKARANARAYANAN

In this paper we study the general exponential sum related to multiplicative functions f(n) with |f(n)| ≤ 1, namely we study the sum [Formula: see text] and obtain a non-trivial upper bound when α is a certain type of rational number.


Author(s):  
R. A. Rankin

Suppose thatis an integral modular form of dimensions −κ, where κ > 0, and Stufe N, which vanishes at all the rational cusps of the fundamental region, and which is absolutely convergent for Thenwhere a, b, c, d are integers such that ad − bc = 1.


1929 ◽  
Vol 24 ◽  
pp. i-iii
Author(s):  
John Dougall

An identity involving symmetric functions of n letters may in a certain class of cases be extended immediately to a greater number of letters.For example, the theoremmay be writtenand in the latter form it is true for any number of letters.


Sign in / Sign up

Export Citation Format

Share Document