The Abelian Case of Solitar's Conjecture on Infinite Nielsen Transformations

1985 ◽  
Vol 28 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Olga Macedonska-Nosalska

AbstractThe paper proves that the group of infinite bounded Nielsen transformations is generated by elementary simultaneous Nielsen transformations modulo the subgroup of those transformations which are equivalent to the identical transformation while acting in a free abelian group. This can be formulated somewhat differently: the group of bounded automorphisms of a free abelian group of countably infinite rank is generated by the elementary simultaneous automorphisms. This proves D. Solitar's conjecture for the abelian case.

1976 ◽  
Vol 15 (3) ◽  
pp. 439-451 ◽  
Author(s):  
R.G. Burns ◽  
I.H. Farouqi

This paper continues the second author's investigation of the normal structure of the automorphism group г of a free abelian group of countably infinite rank. It is shown firstly that, in contrast with the case of finite degree, for each prime p every linear transformation of the vector space of countably infinite dimension over Zp, the field of p elements, is induced by an element of г Since by a result of Alex Rosenberg GL(אo, Zp ) has a (unique) maximal normal subgroup, it then follows that г has maximal normal subgroups, one for each prime.


2018 ◽  
Vol 167 (02) ◽  
pp. 229-247
Author(s):  
TAKAO SATOH

AbstractIn this paper, we study “the ring of component functions” of SL(2, C)-representations of free abelian groups. This is a subsequent research of our previous work [11] for free groups. We introduce some descending filtration of the ring, and determine the structure of its graded quotients.Then we give two applications. In [30], we constructed the generalized Johnson homomorphisms. We give an upper bound on their images with the graded quotients. The other application is to construct a certain crossed homomorphisms of the automorphism groups of free groups. We show that our crossed homomorphism induces Morita's 1-cocycle defined in [22]. In other words, we give another construction of Morita's 1-cocyle with the SL(2, C)-representations of the free abelian group.


2021 ◽  
Vol 56 (1) ◽  
pp. 175-194
Author(s):  
James F. Peters ◽  
◽  

This paper introduces shape boundary regions in descriptive proximity forms of CW (Closure-finite Weak) spaces as a source of amiable fixed subsets as well as almost amiable fixed subsets of descriptive proximally continuous (dpc) maps. A dpc map is an extension of an Efremovič-Smirnov proximally continuous (pc) map introduced during the early-1950s by V.A. Efremovič and Yu.M. Smirnov. Amiable fixed sets and the Betti numbers of their free Abelian group representations are derived from dpc's relative to the description of the boundary region of the sets. Almost amiable fixed sets are derived from dpc's by relaxing the matching description requirement for the descriptive closeness of the sets. This relaxed form of amiable fixed sets works well for applications in which closeness of fixed sets is approximate rather than exact. A number of examples of amiable fixed sets are given in terms of wide ribbons. A bi-product of this work is a variation of the Jordan curve theorem and a fixed cell complex theorem, which is an extension of the Brouwer fixed point theorem.


2020 ◽  
Vol 29 (01) ◽  
pp. 1950097
Author(s):  
Jacob Mostovoy ◽  
Christopher Roque-Márquez

The group of planar (or flat) pure braids on [Formula: see text] strands, also known as the pure twin group, is the fundamental group of the configuration space [Formula: see text] of [Formula: see text] labeled points in [Formula: see text] no three of which coincide. The planar pure braid groups on 3, 4 and 5 strands are free. In this note, we describe the planar pure braid group on 6 strands: it is a free product of the free group on 71 generators and 20 copies of the free abelian group of rank two.


2015 ◽  
Vol 43 (8) ◽  
pp. 3160-3168
Author(s):  
Vladimir Tolstykh

2015 ◽  
Vol 14 (10) ◽  
pp. 1550139 ◽  
Author(s):  
José L. Rodríguez ◽  
Lutz Strüngmann

In this paper, we first show that for every natural number n and every countable reduced cotorsion-free group K there is a short exact sequence [Formula: see text] such that the map G → H is a cellular cover over H and the rank of H is exactly n. In particular, the free abelian group of infinite countable rank is the kernel of a cellular exact sequence of co-rank 2 which answers an open problem from Rodríguez–Strüngmann [J. L. Rodríguez and L. Strüngmann, Mediterr. J. Math.6 (2010) 139–150]. Moreover, we give a new method to construct cellular exact sequences with prescribed torsion free kernels and cokernels. In particular we apply this method to the class of ℵ1-free abelian groups in order to complement results from the cited work and Göbel–Rodríguez–Strüngmann [R. Göbel, J. L. Rodríguez and L. Strüngmann, Fund. Math.217 (2012) 211–231].


1980 ◽  
Vol 23 (1) ◽  
pp. 103-121 ◽  
Author(s):  
R. Warwick Zeamer

Suppose F is an additively written free group of countably infinite rank with basis T and let E = End(F). If we add endomorphisms pointwise on T and multiply them by map composition, E becomes a near-ring. In her paper “On Varieties of Groups and their Associated Near Rings” Hanna Neumann studied the sub-near-ring of E consisting of the endomorphisms of F of finite support, that is, those endomorphisms taking almost all of the elements of T to zero. She called this near-ring Φω. Now it happens that the ideals of Φω are in one to one correspondence with varieties of groups. Moreover this correspondence is a monoid isomorphism where the ideals of φω are multiplied pointwise. The aim of Neumann's paper was to use this isomorphism to show that any variety can be written uniquely as a finite product of primes, and it was in this near-ring theoretic context that this problem was first raised. She succeeded in showing that the left cancellation law holds for varieties (namely, U(V) = U′(V) implies U = U′) and that any variety can be written as a finite product of primes. The other cancellation law proved intractable. Later, unique prime factorization of varieties was proved by Neumann, Neumann and Neumann, in (7). A concise proof using these same wreath product techniques was also given in H. Neumann's book (6). These proofs, however, bear no relation to the original near-ring theoretic statement of the problem.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 563 ◽  
Author(s):  
Vasantha Kandasamy W. B. ◽  
Ilanthenral Kandasamy ◽  
Florentin Smarandache

The neutrosophic triplets in neutrosophic rings ⟨ Q ∪ I ⟩ and ⟨ R ∪ I ⟩ are investigated in this paper. However, non-trivial neutrosophic triplets are not found in ⟨ Z ∪ I ⟩ . In the neutrosophic ring of integers Z ∖ { 0 , 1 } , no element has inverse in Z. It is proved that these rings can contain only three types of neutrosophic triplets, these collections are distinct, and these collections form a torsion free abelian group as triplets under component wise product. However, these collections are not even closed under component wise addition.


2009 ◽  
Vol 61 (4) ◽  
pp. 740-761 ◽  
Author(s):  
Pierre-Emmanuel Caprace ◽  
Frédéric Haglund

Abstract.Given a complete CAT(0) space X endowed with a geometric action of a group Ⲅ, it is known that if Ⲅ contains a free abelian group of rank n, then X contains a geometric flat of dimension n. We prove the converse of this statement in the special case where X is a convex subcomplex of the CAT(0) realization of a Coxeter group W, and Ⲅ is a subgroup of W. In particular a convex cocompact subgroup of a Coxeter group is Gromov-hyperbolic if and only if it does not contain a free abelian group of rank 2. Our result also provides an explicit control on geometric flats in the CAT(0) realization of arbitrary Tits buildings.


Sign in / Sign up

Export Citation Format

Share Document