Factorization in LCM Domains with Conjugation

1994 ◽  
Vol 37 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Raymond A. Beauregard

AbstractAn atomic integral domain with conjugation has unique (in the sense of Theorem 6 below) factorization of atomic factors if it is an LCM domain. If the LCM hypothesis is dropped not even the number of atomic factors in a complete factorization of an element need be unique.

Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves several more results about weak isomorphisms between Moufang sets arising from quadratic forms and involutory sets. It first fixes a non-trivial anisotropic quadratic space Λ‎ = (K, L, q) before considering two proper anisotropic pseudo-quadratic spaces. It then describes a quaternion division algebra and its standard involution, a second quaternion division algebra and its standard involution, and an involutory set with a quaternion division algebra and its standard involution. It concludes with one more small observation regarding a pointed anisotropic quadratic space and shows that there is a unique multiplication on L that turns L into an integral domain with a multiplicative identity.


2012 ◽  
Vol 8 (2) ◽  
Author(s):  
Tri Widjajanti ◽  
Dahlia Ramlan ◽  
Rium Hilum

<em>Ring of integers under the addition and multiplication as integral domain can be imbedded to the field of rational numbers. In this paper we make&nbsp; a construction such that any integral domain can be&nbsp; a field of quotient. The construction contains three steps. First, we define element of field F from elements of integral domain D. Secondly, we show that the binary operations in fare well-defined. Finally, we prove that </em><em>&nbsp;</em><em>f</em><em> </em><em>:</em><em> </em><em>D </em><em>&reg;</em><em> </em><em>F is an isomorphisma. In this case, the polynomial ring F[x] as the integral domain can be imbedded to the field of quotient.</em>


1982 ◽  
Vol 34 (1) ◽  
pp. 196-215 ◽  
Author(s):  
D. D. Anderson ◽  
David F. Anderson

Let R = ⊕α∊гRα be an integral domain graded by an arbitrary torsionless grading monoid Γ. In this paper we consider to what extent conditions on the homogeneous elements or ideals of R carry over to all elements or ideals of R. For example, in Section 3 we show that if each pair of nonzero homogeneous elements of R has a GCD, then R is a GCD-domain. This paper originated with the question of when a graded UFD (every homogeneous element is a product of principal primes) is a UFD. If R is Z+ or Z-graded, it is known that a graded UFD is actually a UFD, while in general this is not the case. In Section 3 we consider graded GCD-domains, in Section 4 graded UFD's, in Section 5 graded Krull domains, and in Section 6 graded π-domains.


2020 ◽  
Vol 32 (5) ◽  
pp. 1109-1129
Author(s):  
Dario Spirito

AbstractWe study decompositions of length functions on integral domains as sums of length functions constructed from overrings. We find a standard representation when the integral domain admits a Jaffard family, when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal primes. We also show that there is a natural bijective correspondence between singular length functions and localizing systems.


2004 ◽  
Vol 15 (10) ◽  
pp. 987-1005 ◽  
Author(s):  
MAHMOUD BENKHALIFA

Let R be a principal and integral domain. We say that two differential graded free Lie algebras over R (free dgl for short) are weakly equivalent if and only if the homologies of their corresponding enveloping universal algebras are isomophic. This paper is devoted to the problem of how we can characterize the weakly equivalent class of a free dgl. Our tool to address this question is the Whitehead exact sequence. We show, under a certain condition, that two R-free dgls are weakly equivalent if and only if their Whitehead sequences are isomorphic.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).


2019 ◽  
Vol 18 (01) ◽  
pp. 1950018 ◽  
Author(s):  
Gyu Whan Chang ◽  
Haleh Hamdi ◽  
Parviz Sahandi

Let [Formula: see text] be a nonzero commutative cancellative monoid (written additively), [Formula: see text] be a [Formula: see text]-graded integral domain with [Formula: see text] for all [Formula: see text], and [Formula: see text]. In this paper, we study graded integral domains in which each nonzero homogeneous [Formula: see text]-ideal (respectively, homogeneous [Formula: see text]-ideal) is divisorial. Among other things, we show that if [Formula: see text] is integrally closed, then [Formula: see text] is a P[Formula: see text]MD in which each nonzero homogeneous [Formula: see text]-ideal is divisorial if and only if each nonzero ideal of [Formula: see text] is divisorial, if and only if each nonzero homogeneous [Formula: see text]-ideal of [Formula: see text] is divisorial.


2015 ◽  
Vol 58 (3) ◽  
pp. 449-458 ◽  
Author(s):  
Jason Greene Boynton ◽  
Jim Coykendall

AbstractIt is well known that the factorization properties of a domain are reflected in the structure of its group of divisibility. The main theme of this paper is to introduce a topological/graph-theoretic point of view to the current understanding of factorization in integral domains. We also show that connectedness properties in the graph and topological space give rise to a generalization of atomicity.


Sign in / Sign up

Export Citation Format

Share Document