On t- Spec(R[[X]])

1995 ◽  
Vol 38 (2) ◽  
pp. 187-195 ◽  
Author(s):  
David E. Dobbs ◽  
Evan G. Houston

AbstractLet D be an integral domain, and let X be an analytic indeterminate. As usual, if I is an ideal of D, set It = ∪{JV = (J-1)-1 | J is a nonzero finitely generated subideal of I}; this defines the t-operation, a particularly useful star-operation on D. We discuss the t-operation on R[[X]], paying particular attention to the relation between t- dim(R) and t- dim(R[[X]]). We show that if P is a t-prime of R, then P[[X]] contains a t-prime which contracts to P in R, and we note that this does not quite suffice to show that t- dim(R[[X]]) ≥ t- dim(R) in general. If R is Noetherian, it is easy to see that t- dim(R[[X]]) ≥ t- dim(R), and we show that we have equality in the case of t-dimension 1. We also observe that if V is a valuation domain, then t-dim(V[[X]]) ≥ t- dim(V), and we give examples to show that the inequality can be strict. Finally, we prove that if V is a finite-dimensional valuation domain with maximal ideal M, then MV[[X]] is a maximal t-ideal of V[[X]].

2012 ◽  
Vol 12 (02) ◽  
pp. 1250156
Author(s):  
OLIVIER A. HEUBO-KWEGNA

Let ⋆ be a star operation on an integral domain R. An ideal A is a ⋆-colon-multiplication ideal if A⋆ = (B(A : B))⋆ for all fractional ideal B of R. We prove that every maximal ideal of R is a ⋆-colon-multiplication ideal if and only if R is a ⋆-CICD or R is a local ⋆-MTP domain. It is also shown that every ideal of R is ⋆-colon-multiplication if and only if R is a ⋆-CICD.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250027
Author(s):  
THOMAS G. LUCAS

An overring t of an integral domain R is t-linked over R if for each finitely generated nonzero ideal I of R, (T : IT) ⊋ T implies (R : I) ⊋ R. A t-linkative domain is one for which each overring is t-linked. The notion of a generally t-linkative domain is introduced as a domain R such that [Formula: see text] is t-linkative for each finite type system of ideals [Formula: see text]. In general, R is generally t-linkative if and only if RM is generally t-linkative for each maximal ideal M. All Prüfer domains are generally t-linkative as are all one-dimensional domains and all pseudo-valuation domains. If R is Noetherian and not a field, then it is generally t-linkative if and only if it is one-dimensional. In contrast, an example is given of a two-dimensional Mori domain that is generally t-linkative.


1994 ◽  
Vol 50 (2) ◽  
pp. 177-195 ◽  
Author(s):  
Theodore G. Faticoni

We use a variation on a construction due to Corner 1965 to construct (Abelian) groups A that are torsion as modules over the ring End (A) of group endomorphisms of A. Some applications include the failure of the Baer-Kaplansky Theorem for Z[X]. There is a countable reduced torsion-free group A such that IA = A for each maximal ideal I in the countable commutative Noetherian integral domain, End (A). Also, there is a countable integral domain R and a countable. R-module A such that (1) R = End(A), (2) T0 ⊗RA ≠ 0 for each nonzero finitely generated (respectively finitely presented) R-module T0, but (3) T ⊗RA = 0 for some nonzero (respectively nonzero finitely generated). R-module T.


2011 ◽  
Vol 10 (03) ◽  
pp. 377-389
Author(s):  
CARLA PETRORO ◽  
MARKUS SCHMIDMEIER

Let Λ be a commutative local uniserial ring of length n, p be a generator of the maximal ideal, and k be the radical factor field. The pairs (B, A) where B is a finitely generated Λ-module and A ⊆B a submodule of B such that pmA = 0 form the objects in the category [Formula: see text]. We show that in case m = 2 the categories [Formula: see text] are in fact quite similar to each other: If also Δ is a commutative local uniserial ring of length n and with radical factor field k, then the categories [Formula: see text] and [Formula: see text] are equivalent for certain nilpotent categorical ideals [Formula: see text] and [Formula: see text]. As an application, we recover the known classification of all pairs (B, A) where B is a finitely generated abelian group and A ⊆ B a subgroup of B which is p2-bounded for a given prime number p.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).


2021 ◽  
Vol 28 (01) ◽  
pp. 13-32
Author(s):  
Nguyen Tien Manh

Let [Formula: see text] be a Noetherian local ring with maximal ideal [Formula: see text], [Formula: see text] an ideal of [Formula: see text], [Formula: see text] an [Formula: see text]-primary ideal of [Formula: see text], [Formula: see text] a finitely generated [Formula: see text]-module, [Formula: see text] a finitely generated standard graded algebra over [Formula: see text] and [Formula: see text] a finitely generated graded [Formula: see text]-module. We characterize the multiplicity and the Cohen–Macaulayness of the fiber cone [Formula: see text]. As an application, we obtain some results on the multiplicity and the Cohen–Macaulayness of the fiber cone[Formula: see text].


1986 ◽  
Vol 102 ◽  
pp. 1-49 ◽  
Author(s):  
Ngô Viêt Trung

Throughout this paper, A denotes a noetherian local ring with maximal ideal m and M a finitely generated A-module with d: = dim M≥1.


2011 ◽  
Vol 10 (03) ◽  
pp. 475-489 ◽  
Author(s):  
PINAR AYDOĞDU ◽  
A. ÇIĞDEM ÖZCAN ◽  
PATRICK F. SMITH

Let R be a ring. Modules satisfying ascending or descending chain conditions (respectively, acc and dcc) on non-summand submodules belongs to some particular classes [Formula: see text], such as the class of all R-modules, finitely generated, finite-dimensional and cyclic modules, are considered. It is proved that a module M satisfies acc (respectively, dcc) on non-summands if and only if M is semisimple or Noetherian (respectively, Artinian). Over a right Noetherian ring R, a right R-module M satisfies acc on finitely generated non-summands if and only if M satisfies acc on non-summands; a right R-module M satisfies dcc on finitely generated non-summands if and only if M is locally Artinian. Moreover, if a ring R satisfies dcc on cyclic non-summand right ideals, then R is a semiregular ring such that the Jacobson radical J is left t-nilpotent.


Author(s):  
Alonso Castillo-Ramirez

For a group [Formula: see text] and a set [Formula: see text], let [Formula: see text] be the monoid of all cellular automata over [Formula: see text], and let [Formula: see text] be its group of units. By establishing a characterization of surjunctive groups in terms of the monoid [Formula: see text], we prove that the rank of [Formula: see text] (i.e. the smallest cardinality of a generating set) is equal to the rank of [Formula: see text] plus the relative rank of [Formula: see text] in [Formula: see text], and that the latter is infinite when [Formula: see text] has an infinite decreasing chain of normal subgroups of finite index, condition which is satisfied, for example, for any infinite residually finite group. Moreover, when [Formula: see text] is a vector space over a field [Formula: see text], we study the monoid [Formula: see text] of all linear cellular automata over [Formula: see text] and its group of units [Formula: see text]. We show that if [Formula: see text] is an indicable group and [Formula: see text] is finite-dimensional, then [Formula: see text] is not finitely generated; however, for any finitely generated indicable group [Formula: see text], the group [Formula: see text] is finitely generated if and only if [Formula: see text] is finite.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


Sign in / Sign up

Export Citation Format

Share Document