scholarly journals On L1-Convergence of Fourier Series under the MVBV Condition

2009 ◽  
Vol 52 (4) ◽  
pp. 627-636 ◽  
Author(s):  
Dan Sheng Yu ◽  
Ping Zhou ◽  
Song Ping Zhou

AbstractLet f ∈ L2π be a real-valued even function with its Fourier series , and let Sn( f , x), n ≥ 1, be the n-th partial sum of the Fourier series. It is well known that if the nonnegative sequence ﹛an﹜ is decreasing and limn→∞an = 0, thenWe weaken the monotone condition in this classical result to the so-called mean value bounded variation (MVBV) condition. The generalization of the above classical result in real-valued function space is presented as a special case of the main result in this paper, which gives the L1-convergence of a function f ∈ L2π in complex space. We also give results on L1-approximation of a function f ∈ L2π under the MVBV condition.

1985 ◽  
Vol 31 (2) ◽  
pp. 199-214
Author(s):  
F. Ustina

As is well known, the divergence of the set of constants known as the Lebesgue constants corresponding to a particular method of summability implies the existence of a continuous, periodic function whose Fourier series, summed by the method, diverges at a point, and of another such function the sums of whose Fourier series converge everywhere but not uniformly in the neighborhood of some point.In 1961, Lorch and Newman established that if L(n; g) is the nth Lebesgue constant for the Hausdorff summability method corresponding to the weight function g(u), thenwherewhere the summation is taken over the jump discontinuities {εk} of g(u) and M{f(u)} denotes the mean value of the almost periodic function f(u).In this paper, a partial extension of this result to the two dimensional analogue is obtained. This extension is summarized in Theorem 1.3.


1961 ◽  
Vol 13 ◽  
pp. 19-36 ◽  
Author(s):  
A. P. Guinand

The classical result of Plancherel for Fourier cosine transforms of functions f(x) of the class L2(0, ∞) states that (see (7) for references)converges in mean square to a function g(x) which also belongs to L2(0, ∞), and furthermoreSome years ago in a series of papers (1; 2; 3) on summation formulae I showed that a similar symmetrical theory for narrower classes of functions and ordinary convergence of the integrals can also be developed.


2001 ◽  
Vol 66 (4) ◽  
pp. 1865-1883 ◽  
Author(s):  
Chaz Schlindwein

One of the main goals in the theory of forcing iteration is to formulate preservation theorems for not collapsing ω1 which are as general as possible. This line leads from c.c.c. forcings using finite support iterations to Axiom A forcings and proper forcings using countable support iterations to semi-proper forcings using revised countable support iterations, and more recently, in work of Shelah, to yet more general classes of posets. In this paper we concentrate on a special case of the very general iteration theorem of Shelah from [5, chapter XV]. The class of posets handled by this theorem includes all semi-proper posets and also includes, among others, Namba forcing.In [5, chapter XV] Shelah shows that, roughly, revised countable support forcing iterations in which the constituent posets are either semi-proper or Namba forcing or P[W] (the forcing for collapsing a stationary co-stationary subset ofwith countable conditions) do not collapse ℵ1. The iteration must contain sufficiently many cardinal collapses, for example, Levy collapses. The most easily quotable combinatorial application is the consistency (relative to a Mahlo cardinal) of ZFC + CH fails + whenever A ∪ B = ω2 then one of A or B contains an uncountable sequentially closed subset. The iteration Shelah uses to construct this model is built using P[W] to “attack” potential counterexamples, Levy collapses to ensure that the cardinals collapsed by the various P[W]'s are sufficiently well separated, and Cohen forcings to ensure the failure of CH in the final model.In this paper we give details of the iteration theorem, but we do not address the combinatorial applications such as the one quoted above.These theorems from [5, chapter XV] are closely related to earlier work of Shelah [5, chapter XI], which dealt with iterated Namba and P[W] without allowing arbitrary semi-proper forcings to be included in the iteration. By allowing the inclusion of semi-proper forcings, [5, chapter XV] generalizes the conjunction of [5, Theorem XI.3.6] with [5, Conclusion XI.6.7].


1990 ◽  
Vol 33 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Juan A. Gatica ◽  
Gaston E. Hernandez ◽  
P. Waltman

The boundary value problemis studied with a view to obtaining the existence of positive solutions in C1([0, 1])∩C2((0, 1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x, y) = a(x)y−p, p>0.This boundary value problem arises in the search of positive radially symmetric solutions towhere Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and |x| is the Euclidean norm of x.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1973 ◽  
Vol 5 (02) ◽  
pp. 217-241 ◽  
Author(s):  
A. M. Walker

Let observations (X 1, X 2, …, Xn ) be obtained from a time series {Xt } such that where the ɛt are independently and identically distributed random variables each having mean zero and finite variance, and the gu (θ) are specified functions of a vector-valued parameter θ. This paper presents a rigorous derivation of the asymptotic distributions of the estimators of A, B, ω and θ obtained by an approximate least-squares method due to Whittle (1952). It is a sequel to a previous paper (Walker (1971)) in which a similar derivation was given for the special case of independent residuals where gu (θ) = 0 for u > 0, the parameter θ thus being absent.


Author(s):  
P. A. P. Moran

Recent investigations by F. Yates (1) in agricultural statistics suggest a mathematical problem which may be formulated as follows. A function f(x) is known to be of bounded variation and Lebesgue integrable on the range −∞ < x < ∞, and its integral over this range is to be determined. In default of any knowledge of the position of the non-negligible values of the function the best that can be done is to calculate the infinite sumfor some suitable δ and an arbitrary origin t, where s ranges over all possible positive and negative integers including zero. S is evidently of period δ in t and ranges over all its values as t varies from 0 to δ. Previous writers (Aitken (2), p. 45, and Kendall (3)) have examined the resulting errors for fixed t. (They considered only symmetrical functions, and supposed one of the lattice points to be located at the centre.) Here we do not restrict ourselves to symmetrical functions and consider the likely departure of S(t) from J (the required integral) when t is a random variable uniformly distributed in (0, δ). It will be shown that S(t) is distributed about J as mean value, with a variance which will be evaluated as a function of δ, the scale of subdivision.


2014 ◽  
Vol 14 (2) ◽  
pp. 117-122 ◽  
Author(s):  
JP Kushwaha ◽  
BP Dhakal

In this paper, an estimate for the degree of approximation of a function belonging to Lip(α, r) class by product summability method Np.q.C1 of its Fourier series has been established. DOI: http://dx.doi.org/10.3126/njst.v14i2.10424 Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 117-122


1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].


Author(s):  
W. K. Hayman

Suppose thatbelongs to L2( − π, π). If most of the coefficients vanish then f (x) cannot be too small in a certain interval without being small generally. More precisely Ingham ((2), Theorem 1) has proved the followingTHEOREM A. Suppose that f (x) is given by (1·1) and that an = 0, except for a sequence n = nν, where nν+1 − nν ≥ C. Then given ∈ > 0 there exists a constant A (∈), such that we have for any real x1


Sign in / Sign up

Export Citation Format

Share Document