scholarly journals Simplices in the Euclidean Ball

2012 ◽  
Vol 55 (3) ◽  
pp. 498-508 ◽  
Author(s):  
Matthieu Fradelizi ◽  
Grigoris Paouris ◽  
Carsten Schütt

AbstractWe establish some inequalities for the second momentof a convex body K under various assumptions on the position of K.

2015 ◽  
Vol 67 (1) ◽  
pp. 3-27
Author(s):  
M. Angeles Alfonseca ◽  
Jaegil Kim

AbstractOne of the fundamental results in convex geometry is Busemann's theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is only natural to ask if there is a quantitative version of Busemann's theorem, i.e., if the intersection body operation actually improves convexity. In this paper we concentrate on the symmetric bodies of revolution to provide several results on the (strict) improvement of convexity under the intersection body operation. It is shown that the intersection body of a symmetric convex body of revolution has the same asymptotic behavior near the equator as the Euclidean ball. We apply this result to show that in sufficiently high dimension the double intersection body of a symmetric convex body of revolution is very close to an ellipsoid in the Banach–Mazur distance. We also prove results on the local convexity at the equator of intersection bodies in the class of star bodies of revolution.


2018 ◽  
Vol 25 (6) ◽  
pp. 680-691
Author(s):  
Mikhail V. Nevskii

Let \(C\) be a convex body and let \(S\) be a nondegenerate simplex in \({\mathbb R}^n\). Denote by \(\tau S\) the image of \(S\) under homothety with a center of homothety in the center of gravity of \(S\) and the ratio \(\tau\). We mean by \(\xi(C;S)\) the minimal \(\tau>0\) such that \(C\) is a subset of the simplex \(\tau S\). Define \(\alpha(C;S)\) as the minimal \(\tau>0\) such that \(C\) is contained in a translate of \(\tau S\). Earlier the author has proved the equalities \(\xi(C;S)=(n+1)\max\limits_{1\leq j\leq n+1}\max\limits_{x\in C}(-\lambda_j(x))+1\)  (if \(C\not\subset S\)), \(\alpha(C;S)=\sum\limits_{j=1}^{n+1} \max\limits_{x\in C} (-\lambda_j(x))+1.\)Here \(\lambda_j\) are the linear functions that are called the basic Lagrange polynomials corresponding to \(S\). The numbers \(\lambda_j(x),\ldots, \lambda_{n+1}(x)\) are the barycentric coordinates of a point \(x\in{\mathbb R}^n\). In his previous papers, the author investigated these formulae in the case when \(C\) is the \(n\)-dimensional unit cube \(Q_n=[0,1]^n\). The present paper is related to the case when \(C\) coincides with the unit Euclidean ball \(B_n=\{x: \|x\|\leq 1\},\) where \(\|x\|=\left(\sum\limits_{i=1}^n x_i^2 \right)^{1/2}.\) We establish various relations for \(\xi(B_n;S)\) and \(\alpha(B_n;S)\), as well as we give their geometric interpretation. For example, if \(\lambda_j(x)=l_{1j}x_1+\ldots+l_{nj}x_n+l_{n+1,j},\) then \(\alpha(B_n;S)=\sum\limits_{j=1}^{n+1}\left(\sum\limits_{i=1}^n l_{ij}^2\right)^{1/2}\). The minimal possible value of each characteristics \(\xi(B_n;S)\) and \(\alpha(B_n;S)\) for \(S\subset B_n\) is equal to \(n\). This value corresponds to a regular simplex inscribed into \(B_n\). Also we compare our results with those obtained in the case \(C=Q_n\).


1969 ◽  
Vol 9 (3-4) ◽  
pp. 503-510
Author(s):  
William J. Firey

Consider a non-degenerate convex body K in a Euclidean (n + 1)-dimensional space of points (x, z) = (x1,…, xn, z) where n ≧2. Denote by μ the maximum length of segments in K which are parallel to the z-axis, and let Aj, signify the area (two dimensional volume) of the orthogonal projection of K onto the linear subspace spanned by the z- and xj,-axes. We shall prove that the volume V(K) of K satisfies After this, some applications of (1) are discussed.


1978 ◽  
Vol 15 (2) ◽  
pp. 235-242 ◽  
Author(s):  
Martin I. Goldstein

Let Z(t) ··· (Z1(t), …, Zk (t)) be an indecomposable critical k-type age-dependent branching process with generating function F(s, t). Denote the right and left eigenvalues of the mean matrix M by u and v respectively and suppose μ is the vector of mean lifetimes, i.e. Mu = u, vM = v.It is shown that, under second moment assumptions, uniformly for s ∈ ([0, 1]k of the form s = 1 – cu, c a constant. Here vμ is the componentwise product of the vectors and Q[u] is a constant.This result is then used to give a new proof of the exponential limit law.


1978 ◽  
Vol 15 (02) ◽  
pp. 235-242
Author(s):  
Martin I. Goldstein

Let Z(t) ··· (Z 1(t), …, Zk (t)) be an indecomposable critical k-type age-dependent branching process with generating function F(s, t). Denote the right and left eigenvalues of the mean matrix M by u and v respectively and suppose μ is the vector of mean lifetimes, i.e. Mu = u, vM = v. It is shown that, under second moment assumptions, uniformly for s ∈ ([0, 1] k of the form s = 1 – cu, c a constant. Here vμ is the componentwise product of the vectors and Q[u] is a constant. This result is then used to give a new proof of the exponential limit law.


1998 ◽  
Vol 30 (2) ◽  
pp. 335-341
Author(s):  
Marius Stoka

Let us consider, in the Euclidean space En, a fixed n-dimensional convex body K0 of volume V0 and a system K1,…,Km of mn-dimensional convex bodies, congruent to a convex set K. Assume that the sets Ki (i = 1,…,m) have random positions, being stochastically independent and uniformly distributed on a limited domain of En and denote by Vm the volume of the convex body Km = K0 ∩ (K1 ∩ … ∩ Km). The aim of this paper is the evaluation of the second moment of the random variable Vm.


2019 ◽  
Vol 149 (5) ◽  
pp. 1241-1290
Author(s):  
Pierre-Yves Bienvenu

AbstractWe prove asymptotic formulae for sums of the form $$\sum\limits_{n\in {\open z}^d\cap K} {\prod\limits_{i = 1}^t {F_i} } (\psi _i(n)),$$where K is a convex body, each Fi is either the von Mangoldt function or the representation function of a quadratic form, and Ψ = (ψ1, …, ψt) is a system of linear forms of finite complexity. When all the functions Fi are equal to the von Mangoldt function, we recover a result of Green and Tao, while when they are all representation functions of quadratic forms, we recover a result of Matthiesen. Our formulae imply asymptotics for some polynomial patterns in the primes. For instance, they describe the asymptotic behaviour of the number of k-term arithmetic progressions of primes whose common difference is a sum of two squares.The paper combines ingredients from the work of Green and Tao on linear equations in primes and that of Matthiesen on linear correlations amongst integers represented by a quadratic form. To make the von Mangoldt function compatible with the representation function of a quadratic form, we provide a new pseudorandom majorant for both – an average of the known majorants for each of the functions – and prove that it has the required pseudorandomness properties.


1998 ◽  
Vol 30 (02) ◽  
pp. 335-341
Author(s):  
Marius Stoka

Let us consider, in the Euclidean space E n , a fixed n-dimensional convex body K 0 of volume V 0 and a system K 1,…,K m of m n-dimensional convex bodies, congruent to a convex set K. Assume that the sets K i (i = 1,…,m) have random positions, being stochastically independent and uniformly distributed on a limited domain of E n and denote by V m the volume of the convex body K m = K 0 ∩ (K 1 ∩ … ∩ K m ). The aim of this paper is the evaluation of the second moment of the random variable V m .


Sign in / Sign up

Export Citation Format

Share Document