Classification of Solutions for Harmonic Functions With Neumann Boundary Value

2018 ◽  
Vol 61 (2) ◽  
pp. 438-448 ◽  
Author(s):  
Tao Zhang ◽  
Chunqin Zhou

AbstractIn this paper, we classify all solutions ofwith the finite conditionsHere c is a positive number and β > −1.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-40
Author(s):  
Lan Nguyen

Abstract In this paper, we classify all solutions with cyclic and semi-cyclic semigroup supports of the functional equations arising from multiplication of quantum integers with fields of coefficients of characteristic zero. This also solves completely the classification problem proposed by Melvyn Nathanson and Yang Wang concerning the solutions, with semigroup supports which are not prime subsemigroups of ℕ, to these functional equations for the case of rational field of coefficients. As a consequence, we obtain some results for other problems raised by Nathanson concerning maximal solutions and extension of supports of solutions to these functional equations in the case where the semigroup supports are not prime subsemigroups of ℕ.


2016 ◽  
Vol 21 (4) ◽  
pp. 502-521 ◽  
Author(s):  
Irina Astashova

The asymptotic behavior of all solutions to the fourth-order Emden– Fowler type differential equation with singular nonlinearity is investigated. The equation is transformed into a system on the three-dimensional sphere. By investigation of the asymptotic behavior of all possible trajectories of this system an asymptotic classification of all solutions to the equation is obtained.


2020 ◽  
Vol 28 (2) ◽  
pp. 237-241
Author(s):  
Biljana M. Vojvodic ◽  
Vladimir M. Vladicic

AbstractThis paper deals with non-self-adjoint differential operators with two constant delays generated by {-y^{\prime\prime}+q_{1}(x)y(x-\tau_{1})+(-1)^{i}q_{2}(x)y(x-\tau_{2})}, where {\frac{\pi}{3}\leq\tau_{2}<\frac{\pi}{2}<2\tau_{2}\leq\tau_{1}<\pi} and potentials {q_{j}} are real-valued functions, {q_{j}\in L^{2}[0,\pi]}. We will prove that the delays and the potentials are uniquely determined from the spectra of four boundary value problems: two of them under boundary conditions {y(0)=y(\pi)=0} and the remaining two under boundary conditions {y(0)=y^{\prime}(\pi)=0}.


2019 ◽  
Vol 7 (1) ◽  
pp. 179-196
Author(s):  
Anders Björn ◽  
Daniel Hansevi

Abstract The theory of boundary regularity for p-harmonic functions is extended to unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1 < p < ∞. The barrier classification of regular boundary points is established, and it is shown that regularity is a local property of the boundary. We also obtain boundary regularity results for solutions of the obstacle problem on open sets, and characterize regularity further in several other ways.


2012 ◽  
Vol 86 (2) ◽  
pp. 244-253 ◽  
Author(s):  
YANG-WEN ZHANG ◽  
HONG-XU LI

AbstractIn this paper, we consider the Neumann boundary value problem with a parameter λ∈(0,∞): By using fixed point theorems in a cone, we obtain some existence, multiplicity and nonexistence results for positive solutions in terms of different values of λ. We also prove an existence and uniqueness theorem and show the continuous dependence of solutions on the parameter λ.


2016 ◽  
Vol 56 (3) ◽  
pp. 245
Author(s):  
Marzena Szajewska ◽  
Agnieszka Tereszkiewicz

Boundary value problems are considered on a simplex <em>F</em> in the real Euclidean space R<sup>2</sup>. The recent discovery of new families of special functions, orthogonal on <em>F</em>, makes it possible to consider not only the Dirichlet or Neumann boundary value problems on <em>F</em>, but also the mixed boundary value problem which is a mixture of Dirichlet and Neumann type, ie. on some parts of the boundary of <em>F</em> a Dirichlet condition is fulfilled and on the other Neumann’s works.


Sign in / Sign up

Export Citation Format

Share Document