scholarly journals Tcrδtranslocations that delete theBcl11bhaploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia

Cell Cycle ◽  
2014 ◽  
Vol 13 (19) ◽  
pp. 3076-3082 ◽  
Author(s):  
Lori A Ehrlich ◽  
Katherine Yang-Iott ◽  
Craig H Bassing
Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2180-2186 ◽  
Author(s):  
JM Cayuela ◽  
A Madani ◽  
L Sanhes ◽  
MH Stern ◽  
F Sigaux

No constant genetic alteration has yet been unravelled in T-cell acute lymphoblastic leukemia (T-ALL), and, to date, the most frequent alteration, the SIL-TAL1 deletion, is found in approximately 20% of cases. Recently, two genes have been identified, the multiple tumor- suppressor gene 1 (MTS1) and multiple tumor-suppressor gene 2 (MTS2), whose products inhibit cell cycle progression. A characterization of the MTS locus organization allowed to determine the incidence of MTS1 and MTS2 inactivation in T-ALL. MTS1 and MTS2 configurations were determined by Southern blotting using 8 probes in 59 patients with T- ALL (40 children and 19 adults). Biallelic MTS1 inactivation by deletions and/or rearrangements was observed in 45 cases (76%). Monoallelic alterations were found in 6 cases (10%). The second MTS1 allele was studied in the 4 cases with available material. A point mutation was found in 2 cases. The lack of MTS1 mRNA expression was observed by Northern blot analysis in a third case. A normal single- strand conformation polymorphism pattern of MTS1 exons 1alpha and 2 was found and MTS1 RNA was detected in the fourth case, but a rearrangement occurring 5′ to MTS1 exon 1 alpha deleting MTS1 exon 1Beta was documented. One case presented a complex rearrangement. Germline configuration for MTS1 and MTS2 was found in only 7 cases. The localization of the 17 breakpoints occurring in the MTS locus were determined. Ten of them (59%) are clustered in a 6-kb region located 5 kb downstream to the newly identified MTS1 exon 1Beta. No rearrangement disrupting MTS2 was detected and more rearrangements spared MTS2 than MTS1 (P<.01). MTS1 but not MTS2 RNA was detected by Northern blotting in the human thymus. These data strongly suggest that MTS1 is the functional target of rearrangements in T-ALL. MTS1 inactivation, observed in at least 80% of T-ALL, is the most consistent genetic defect found in this disease to date.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3527-3527
Author(s):  
Masafumi Seki ◽  
Kenichi Yoshida ◽  
Shiraishi Yuichi ◽  
Kenichi Chiba ◽  
Hiroko Tanaka ◽  
...  

Abstract T-cell acute lymphoblastic leukemia (T-ALL) accounts for 10% to 15% of newly diagnosed cases of childhood acute lymphoblastic leukemia (ALL). Recent genome-wide approach revealed frequent NOTCH1 and FBXW7 oncogenic mutations in T-ALL. In addition, previous whole-exome sequencing disclosed novel CNOT3 mutations in approximately 10% of adult T-ALL cases, and thus, CNOT3 is thought to be one of the novel tumor suppressor gene for adult T-ALL. However, somatic mutations in these genes have been found in a fraction of childhood T-ALL, suggesting that the existence of other genetic pathogenesis. Although chromosomal translocations are the most frequent genetic abnormalities detected in other types of leukemia, recurrent translocations except for SIL-TAL1 rearrangement have been poorly defined in T-ALL. To discover driver mutations or fusion genes which involved in the pathogenesis of pediatric T-ALL and to identify novel prognostic markers of childhood T-ALL, we performed whole-exome sequencing (WES) and transcriptome sequencing (WTS) in 25 cases with T-ALL. Diagnostic total DNA from 25 cases and RNA from 15 cases were analyzed for both WES and WTS, and 8 relapsed samples were also analyzed for WES. Median age at diagnosis was 9 years old (1–15), and male to female ratio was 20 to 5. Libraries for WES and WTS were generated using the SureSelect (Agilent) or TruSeq RNA Sample Preparation kit (Illumina), respectively. High throughput sequencing was performed using the Illumina HiSeq 2000 platform. To detect somatic mutations or fusion transcripts, we used our pipeline “Genomon-exome” and “Genomon-fusion” algorithm. Subsequently, somatic mutations were validated using deep amplicon sequencing. Candidate fusion transcripts were validated by reverse - transcription polymerase-chain-reaction (RT-PCR) and Sanger sequencing. Most frequent mutation was NOTCH1, which was detected in 52% (13/25) by WES. FBXW7 mutations were also frequently found in 28% (7/25), and 43 % (3/7) were compound heterozygous mutations. In those 6 cases, only one case with FBWX7 mutation had a NOTCH1 mutation. CNOT3 mutations were reported to be frequent in adult T-ALL; however we found only 2 cases with CNOT3 mutations (8.0%). In addition, PHF6 mutation, which is known as X-linked tumor suppressor gene in T-ALL, was recurrently detected in 4 cases (16%). Other recurrent mutations were shared between 2 cases, respectively. We identified previously known fusion genes, such as MLL-ENL and FGFROP1-FGFR1 in 2 cases. MLL-ENL is one of the frequent translocation for infant multilineage leukemia (MLL), but also reported in non-infant B cell precursor ALL or T-ALL. FGFR1OP is ubiquitously expressed, and the predicted chimeric FGFR1OP-FGFR1 protein contains the catalytic domain of FGFR1. It is thought to be promote hematopoietic stem cell proliferation and leukemogenesis through a constitutive phosphorylation and activation of the downstream pathway of FGFR1. In conclusion, although NOTCH1 and FBXW7 mutations were relatively frequently detected in our series, we could not detect frequent additional mutations in this study. Consistent with other reports, frequent translocations were not observed in T-ALL, suggesting the genetic differences between T-ALL and other hematological malignancies. Further studies will be necessary to unravel oncogenic mechanisms that implicated in new therapeutic strategy for pediatric T-ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3869-3875 ◽  
Author(s):  
H Cave ◽  
B Gerard ◽  
E Martin ◽  
C Guidal ◽  
I Devaux ◽  
...  

Abnormalities of the short arm of chromosome 12 are relatively common in hematologic malignancies and deletions of the region. 12p12–13 are found in approximately 5% of the patients with acute lymphoblastic leukemia (ALL). As a potent inhibitor of cyclin-dependent kinases, p27KIP1 prevents the progression of the cell cycle and the gene encoding p27KIP1 represents a potential tumor-suppressor gene. Its recent assignment to the chromosomal region (12p12.3) prompted us to study the p27KIP1 gene in a series of 61 children with ALL. Microsatellite polymorphic markers flanking the p27KIP1 gene were analyzed to detect losses of heterozygosity (LOH). Eleven patients displayed LOH for at least one of the markers. The deleted are encompassed the p27KIP1 gene locus in 10 cases, but inactivation of the remaining allele by deletion, translocation, or mutation was never observed. In addition, in 1 patient, the p27KIP1 gene was situated outside of the region of LOH. Thus, p27KIP1 does not seem to be the target gene of 12p12–13 alterations. However, this study indicates that 12p12–13 alterations at the molecular level, which are present in about 27% of the children with B-lineage ALL, are much more common than had previously been reported by usual chromosome analysis. Moreover, LOH mapping allowed us to better define the location of a putative tumor- suppressor gene implicated in these malignancies and should therefore help in identifying this gene.


2020 ◽  
Vol Volume 12 ◽  
pp. 1253-1259
Author(s):  
Sanaz Mansouri ◽  
Behzad Khansarinejad ◽  
Ghasem Mosayebi ◽  
Aziz Eghbali ◽  
Mahdieh Mondanizadeh

2011 ◽  
Vol 43 (8) ◽  
pp. 815-815 ◽  
Author(s):  
Konstantinos J Mavrakis ◽  
Joni Van Der Meulen ◽  
Andrew L Wolfe ◽  
Xiaoping Liu ◽  
Evelien Mets ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document