Unreported combination of rearrangements in a childhood B-cell acute lymphoblastic leukemia case: Coexistence of translocation t(8;14) and monoallelic loss of tumor suppressor gene TP53

Gene Reports ◽  
2018 ◽  
Vol 10 ◽  
pp. 66-70
Author(s):  
Abdulsamad Wafa ◽  
Belal Ali ◽  
Abdulmunim Aljapawe ◽  
Thomas Liehr ◽  
Suher ALmedani ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2522-2530 ◽  
Author(s):  
Robert A. J. Signer ◽  
Encarnacion Montecino-Rodriguez ◽  
Owen N. Witte ◽  
Kenneth Dorshkind

Abstract Philadelphia chromosome–positive (Ph+) B-acute lymphoblastic leukemia (B-ALL) can initiate in committed B-cell progenitors. However, the stages of B-cell differentiation in which disease can initiate and the efficiency with which this occurs are unclear. We now demonstrate that B-cell progenitors, up to and including the pro-B cell, efficiently initiate Ph+ B-ALL. However, cells at the pre-B-cell stage of development did not initiate disease. We show that this difference in leukemia initiating potential is due to the level at which the Arf tumor suppressor gene is induced in specific stages of B lymphopoiesis. Whereas immature B-cell progenitors survive the relatively low levels of Arf that are induced after oncogene expression, pre-B cells express the tumor suppressor gene at high levels and undergo massive apoptosis. These data demonstrate that the molecular events that control Ph+ B-ALL initiation and tumor suppression in the B-cell lineage are developmentally regulated.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2180-2186 ◽  
Author(s):  
JM Cayuela ◽  
A Madani ◽  
L Sanhes ◽  
MH Stern ◽  
F Sigaux

No constant genetic alteration has yet been unravelled in T-cell acute lymphoblastic leukemia (T-ALL), and, to date, the most frequent alteration, the SIL-TAL1 deletion, is found in approximately 20% of cases. Recently, two genes have been identified, the multiple tumor- suppressor gene 1 (MTS1) and multiple tumor-suppressor gene 2 (MTS2), whose products inhibit cell cycle progression. A characterization of the MTS locus organization allowed to determine the incidence of MTS1 and MTS2 inactivation in T-ALL. MTS1 and MTS2 configurations were determined by Southern blotting using 8 probes in 59 patients with T- ALL (40 children and 19 adults). Biallelic MTS1 inactivation by deletions and/or rearrangements was observed in 45 cases (76%). Monoallelic alterations were found in 6 cases (10%). The second MTS1 allele was studied in the 4 cases with available material. A point mutation was found in 2 cases. The lack of MTS1 mRNA expression was observed by Northern blot analysis in a third case. A normal single- strand conformation polymorphism pattern of MTS1 exons 1alpha and 2 was found and MTS1 RNA was detected in the fourth case, but a rearrangement occurring 5′ to MTS1 exon 1 alpha deleting MTS1 exon 1Beta was documented. One case presented a complex rearrangement. Germline configuration for MTS1 and MTS2 was found in only 7 cases. The localization of the 17 breakpoints occurring in the MTS locus were determined. Ten of them (59%) are clustered in a 6-kb region located 5 kb downstream to the newly identified MTS1 exon 1Beta. No rearrangement disrupting MTS2 was detected and more rearrangements spared MTS2 than MTS1 (P<.01). MTS1 but not MTS2 RNA was detected by Northern blotting in the human thymus. These data strongly suggest that MTS1 is the functional target of rearrangements in T-ALL. MTS1 inactivation, observed in at least 80% of T-ALL, is the most consistent genetic defect found in this disease to date.


Blood ◽  
1995 ◽  
Vol 86 (10) ◽  
pp. 3869-3875 ◽  
Author(s):  
H Cave ◽  
B Gerard ◽  
E Martin ◽  
C Guidal ◽  
I Devaux ◽  
...  

Abnormalities of the short arm of chromosome 12 are relatively common in hematologic malignancies and deletions of the region. 12p12–13 are found in approximately 5% of the patients with acute lymphoblastic leukemia (ALL). As a potent inhibitor of cyclin-dependent kinases, p27KIP1 prevents the progression of the cell cycle and the gene encoding p27KIP1 represents a potential tumor-suppressor gene. Its recent assignment to the chromosomal region (12p12.3) prompted us to study the p27KIP1 gene in a series of 61 children with ALL. Microsatellite polymorphic markers flanking the p27KIP1 gene were analyzed to detect losses of heterozygosity (LOH). Eleven patients displayed LOH for at least one of the markers. The deleted are encompassed the p27KIP1 gene locus in 10 cases, but inactivation of the remaining allele by deletion, translocation, or mutation was never observed. In addition, in 1 patient, the p27KIP1 gene was situated outside of the region of LOH. Thus, p27KIP1 does not seem to be the target gene of 12p12–13 alterations. However, this study indicates that 12p12–13 alterations at the molecular level, which are present in about 27% of the children with B-lineage ALL, are much more common than had previously been reported by usual chromosome analysis. Moreover, LOH mapping allowed us to better define the location of a putative tumor- suppressor gene implicated in these malignancies and should therefore help in identifying this gene.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4332-4332
Author(s):  
Sarina Sulong ◽  
Julie Irving ◽  
Marian Case ◽  
Lynne Minto ◽  
Nick Bown ◽  
...  

Abstract Genetic alterations including chromosomal translocation, promoter hypermethylation, somatic mutation and gene deletion are believed to play a key role in the leukemogenic process in childhood acute lymphoblastic leukemia (ALL). The p16INK4a (CDKN2A/MTS1/p16/INK4a) gene located on chromosome 9p21 is a tumor suppressor gene whose product can block cell division during the G1/S phase of the cell cycle. Inactivation of p16INK4a in ALL can occur by deletion, promoter hypermethylation or somatic mutation. However, published reports are inconsistent in terms of both incidence and route of p16INK4a inactivation suggesting that a detailed analysis of all possible modes of inactivation in a large cohort is essential to clarify the status of this gene in leukemogenesis. In this study, we report the findings of a comprehensive analysis of p16INK4a in 115 DNA samples with childhood ALL (86 cases at presentation and 29 cases at relapse) in which a combination of techniques including, fluorescence in situ hybridization (FISH), mapping arrays, denaturing high performance liquid chromatography (dHPLC) and methylation specific-PCR (MSP) were used to assess the mode of inactivation of this gene. Data from a genome-wide screening in 86 presentation cases and 20 of 29 relapse cases using Affymetrix Mapping 10K and/or 50K single nucleotide polymorphism (SNP) microarray technique showed loss of heterozygosity (LOH) at the p16INK4a locus in 21% (22/106) of cases (14 at presentation and 8 at relapse), 14 (8 at presentation and 6 at relapse) with an associated loss of copy number and 8 (6 at presentation and 2 at relapse) with a normal copy number, indicative of acquired isodisomy (AID). FISH analysis on 19 of the 22 confirmed that those cases with LOH and copy number loss had either p16INK4a homozygous (n=6) or hemizygous (n=6) deletion and those with LOH associated with AID (n=7) retained 2 copies. Mutation and methylation analyses were performed on those cases identified to have one p16INK4a allele or retention of both alleles. Partial methylation of p16INK4a was found in only 1 case. Mutational screening by dHPLC of the coding region revealed a somatic mutation, H83Y, in a subpopulation of leukemic blasts in one patient at relapse. Three common SNPs were identified including A148T in exon 2 and 500C&gt;G and 540 C&gt;T in the 3′ UTR. These data show that mutation and hypermethylation of p16INK4a are rare events in childhood ALL but that homozygous and hemizygous deletion is relatively common. The loss of only one p16INK4a allele in this latter group, without evidence for mutation or hypermethylation of the remaining one suggests that p16INK4a may be haploinsufficient in ALL. The finding that LOH on 9p locus is common but in nearly 40% of these cases is associated with AID with intact p16INK4a, suggests the existence of another tumor suppressor gene or oncogene in this region, which may have importance in leukemogenesis.


Blood ◽  
2013 ◽  
Vol 122 (14) ◽  
pp. 2425-2432 ◽  
Author(s):  
Arianne Perez-Garcia ◽  
Alberto Ambesi-Impiombato ◽  
Michael Hadler ◽  
Isaura Rigo ◽  
Charles A. LeDuc ◽  
...  

Key Points SH2B3 is a recessive tumor suppressor gene with germline and somatic mutations in ALL.


Sign in / Sign up

Export Citation Format

Share Document