scholarly journals Autophagic proteins regulate cigarette smoke induced apoptosis: Protective role of heme oxygenase-1

Autophagy ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 887-895 ◽  
Author(s):  
Hong Pyo Kim ◽  
Xue Wang ◽  
Seon-Jin Lee ◽  
Min-Hsin Huang ◽  
Yong Wan ◽  
...  
2018 ◽  
Vol 20 (1) ◽  
pp. 39 ◽  
Author(s):  
Shih-Kai Chiang ◽  
Shuen-Ei Chen ◽  
Ling-Chu Chang

Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.


Shock ◽  
2008 ◽  
Vol 29 (2) ◽  
pp. 252-261 ◽  
Author(s):  
Kazuyoshi Inoue ◽  
Toru Takahashi ◽  
Kenji Uehara ◽  
Hiroko Shimuzu ◽  
Kana Ido ◽  
...  

2008 ◽  
Vol 211 (16) ◽  
pp. 2700-2706 ◽  
Author(s):  
D. Wang ◽  
X.-P. Zhong ◽  
Z.-X. Qiao ◽  
J.-F. Gui

2019 ◽  
Vol 20 (15) ◽  
pp. 3628 ◽  
Author(s):  
Yoshimi Kishimoto ◽  
Kazuo Kondo ◽  
Yukihiko Momiyama

Heme oxygenase-1 (HO-1) is an intracellular enzyme that catalyzes the oxidation of heme to generate ferrous iron, carbon monoxide (CO), and biliverdin, which is subsequently converted to bilirubin. These products have anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-thrombotic properties. Although HO-1 is expressed at low levels in most tissues under basal conditions, it is highly inducible in response to various pathophysiological stresses/stimuli. HO-1 induction is thus thought to be an adaptive defense system that functions to protect cells and tissues against injury in many disease settings. In atherosclerosis, HO-1 may play a protective role against the progression of atherosclerosis, mainly due to the degradation of pro-oxidant heme, the generation of anti-oxidants biliverdin and bilirubin and the production of vasodilator CO. In animal models, a lack of HO-1 was shown to accelerate atherosclerosis, whereas HO-1 induction reduced atherosclerosis. It was also reported that HO-1 induction improved the cardiac function and postinfarction survival in animal models of heart failure or myocardial infarction. Recently, we and others examined blood HO-1 levels in patients with atherosclerotic diseases, e.g., coronary artery disease (CAD) and peripheral artery disease (PAD). Taken together, these findings to date support the notion that HO-1 plays a protective role against the progression of atherosclerotic diseases. This review summarizes the roles of HO-1 in atherosclerosis and focuses on the clinical studies that examined the relationships between HO-1 levels and atherosclerotic diseases.


2007 ◽  
Vol 1095 (1) ◽  
pp. 251-261 ◽  
Author(s):  
G. JANCSO ◽  
B. CSEREPES ◽  
B. GASZ ◽  
L. BENKO ◽  
B. BORSICZKY ◽  
...  

2010 ◽  
Vol 10 (4) ◽  
pp. 310-316 ◽  
Author(s):  
Emmanuel Aztatzi-Santillan ◽  
Felipe Eduardo Nares-Lopez ◽  
Berenice Marquez-Valadez ◽  
Penelope Aguilera ◽  
Maria Elena Chanez-Cardenas

Sign in / Sign up

Export Citation Format

Share Document