Evaluation of salt tolerance in ectoine-transgenic tomato plants (Lycopersicon esculentum) in terms of photosynthesis, osmotic adjustment, and carbon partitioning

GM Crops ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Reda E.A. Moghaieb ◽  
Akiko Nakamura ◽  
Hirofumi Saneoka ◽  
Kounosuke Fujita
2019 ◽  
Vol 135 ◽  
pp. 77-86 ◽  
Author(s):  
Mourad Baghour ◽  
Francisco Javier Gálvez ◽  
M. Elena Sánchez ◽  
M. Nieves Aranda ◽  
Kees Venema ◽  
...  

2008 ◽  
Vol 133 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Alicia Muñoz-Mayor ◽  
Benito Pineda ◽  
Jose O. Garcia-Abellán ◽  
Begoña Garcia-Sogo ◽  
Elena Moyano ◽  
...  

Plant Omics ◽  
2021 ◽  
pp. 1-10
Author(s):  
Ghada Ahmed Abu El-Heba

Tomato (Lycopersicon esculentum) is the main vegetal crop that has tremendous popularity around the world. Medicago truncatula NOOT gene (Mt-NOOT) encodes a BTB/POZ-ankyrin repeat protein of the NONEXPRESSOR OF PR GENES1 (NPR1 family). It was introduced into Lycopersicon esculentum (Tomato) genome. The tomato plants that ectopically expressed Mt-NOOT obtained several favorable traits and fruit quality. Heteroblasty between the transgenic and the non-transgenic tomato leaves and flower architecture were used to distinguish transgenic and wild lines. Transgenic tomato plants accumulated a significant amount of phenolic compounds and plant pigmentations compared to the wild type. On the other hand, transgenic plants acquired a considerable amount of antioxidant such as CuZnSO superoxide dismutase (SOD), tomato Catalase (CAT), and tomato Cell wall-associated peroxidase (TPX1) than the wild type. Antioxidant high content together with the high content of phenolic compounds enabled the transgenic tomato fruits to gain not only edible benefits, but also a significant higher shelf-time, extended to six months more than the wild type stored at 25°C in dark and dry condition. Surprisingly, transgenic tomato fruits did not show any rotten process during long time storage as they did not acquire any contagious microorganism. Total fruit productivity in transgenic tomato was greater than the control with an estimated ratio of 84%.


2014 ◽  
Vol 40 (1) ◽  
pp. 14-17 ◽  
Author(s):  
Ye. N. Baranova ◽  
E. N. Akanov ◽  
A. A. Gulevich ◽  
L. V. Kurenina ◽  
S. A. Danilova ◽  
...  

1989 ◽  
Vol 218 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Michael W. Lassner ◽  
Joseph M. Palys ◽  
John I. Yoder

1991 ◽  
Vol 3 (11) ◽  
pp. 1187 ◽  
Author(s):  
Harry J. Klee ◽  
Maria B. Hayford ◽  
Keith A. Kretzmer ◽  
Gerard F. Barry ◽  
Ganesh M. Kishore

2009 ◽  
Vol 35 (4) ◽  
pp. 223-226 ◽  
Author(s):  
E. K. Serenko ◽  
V. N. Ovchinnikova ◽  
L. V. Kurenina ◽  
E. N. Baranova ◽  
A. A. Gulevich ◽  
...  

1992 ◽  
Vol 20 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Caius M. T. Rommens ◽  
George N. Rudenko ◽  
Paul P. Dijkwel ◽  
Mark J. J. van Haaren ◽  
Pieter B. F. Ouwerkerk ◽  
...  

2007 ◽  
Vol 68 (11) ◽  
pp. 1497-1509 ◽  
Author(s):  
David J. Millar ◽  
Marianne Long ◽  
Georgina Donovan ◽  
Paul D. Fraser ◽  
Alain-Michel Boudet ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 822 ◽  
Author(s):  
Yu-Hui Hong ◽  
Jun Meng ◽  
Xiao-Li He ◽  
Yuan-Yuan Zhang ◽  
Yu-Shi Luan

Tomato is the highest-value fruit/vegetable crop worldwide. However, the quality and yield of tomatoes are severely affected by late blight. MicroRNA482s (miR482s) are involved in the plant’s immune system. In this study, miR482c was transiently and stably overexpressed in tomatoes in transgenic plants to explore its mechanism in tomato resistance against late blight. Transgenic tomato plants with transiently overexpressed miR482c displayed a larger lesion area than the control plants upon infection. Furthermore, compared with wild-type (WT) tomato plants, the transgenic tomato plants stably overexpressing miR482c displayed a decreased expression of target genes accompanied by lower peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL) activity activities and higher malondialdehyde (MDA) content, thereby leading to a decline in reactive oxygen species (ROS) scavenging ability and aggravating the damage of lipid peroxidation product accumulation on the cell membrane, eventually enhancing plant susceptibility. This finding indicates that miR482c may act as a negative regulator in tomato resistance by regulating nucleotide binding sites and leucine-rich repeat (NBS-LRR) expression levels and ROS levels.


Sign in / Sign up

Export Citation Format

Share Document