scholarly journals Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia

2012 ◽  
Vol 3 (3) ◽  
pp. 228-234 ◽  
Author(s):  
Sharon Downes ◽  
Rod Mahon
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Rafiq Shahid ◽  
Muhammad Farooq ◽  
Muhammad Shakeel ◽  
Misbah Ashraf ◽  
Zia Ullah Zia ◽  
...  

Abstract Background The effectiveness of Bacillus thuringiensis (Bt) cotton against target arthropod larvae is decreasing day by day. The comparative effect of Bt expression among Bt cotton varieties and different plant parts was observed against the cotton bollworms: Helicoverpa armigera and Pectinophora gossypiella larvae. Results In the present study, larval mortality of H. armigera was higher than P. gossypiella among selected Bt cultivars. Median lethal concentration (LC50) values were 8.91, 13.4, 14.0, and 36.4 for P. gossypiella, while 5.91, 4.04, 2.37, and 8.26 for H. armigera of FH-142, MNH-886, IR-3701, and FH-Lalazar, respectively. These values depicted that P. gossypiella had more Bt resistance problem than H. armigera larvae. The host range of both targeted insect larvae was different from each other due to the polyphagous feeding nature of the larvae of H. armigera that feed on different host plants, but P. gossypiella attacked only cotton with monophagous feeding habit. It was also notable from results that Bt expression in reproductive parts where the attacked pink bollworm was lower than the American bollworm, so the former had the maximum chance of resistance due to repeated exposure to Bt. Conclusions It was concluded that farmers be advised to follow the practice of growing non-Bt as a refuge crop to reduce the problem of Bt resistance in the target arthropod species.


2016 ◽  
Vol 107 (2) ◽  
pp. 188-199 ◽  
Author(s):  
G.H. Baker ◽  
C.R. Tann

AbstractThe cotton bollworm, Helicoverpa armigera, is a major pest of many agricultural crops in several countries, including Australia. Transgenic cotton, expressing a single Bt toxin, was first used in the 1990s to control H. armigera and other lepidopteran pests. Landscape scale or greater pest suppression has been reported in some countries using this technology. However, a long-term, broad-scale pheromone trapping program for H. armigera in a mixed cropping region in eastern Australia caught more moths during the deployment of single Bt toxin cotton (Ingard®) (1996–2004) than in previous years. This response can be attributed, at least in part, to (1) a precautionary cap (30% of total cotton grown, by area) being applied to Ingard® to restrict the development of Bt resistance in the pest, and (2) during the Ingard® era, cotton production greatly increased (as did that of another host plant, sorghum) and H. armigera (in particular the 3rd and older generations) responded in concert with this increase in host plant availability. However, with the replacement of Ingard® with Bollgard II® cotton (containing two different Bt toxins) in 2005, and recovery of the cotton industry from prevailing drought, H. armigera failed to track increased host-plant supply and moth numbers decreased. Greater toxicity of the two gene product, introduction of no cap on Bt cotton proportion, and an increase in natural enemy abundance are suggested as the most likely mechanisms responsible for the suppression observed.


2008 ◽  
Vol 101 (3) ◽  
pp. 933-943 ◽  
Author(s):  
Fengyi Liu ◽  
Zhiping Xu ◽  
Juhua Chang ◽  
Jin Chen ◽  
Fengxia Meng ◽  
...  

2012 ◽  
Vol 103 (2) ◽  
pp. 171-181 ◽  
Author(s):  
G.H. Baker ◽  
C.R. Tann

AbstractTransgenic (Bt) cotton dominates Australian cotton production systems. It is grown to control feeding damage by lepidopteran pests such as Helicoverpa armigera. The possibility that these moths might become resistant to Bt remains a threat. Consequently, refuge crops (with no Bt) must be grown with Bt cotton to produce large numbers of Bt-susceptible moths to reduce the risk of resistance developing. A key assumption of the refuge strategy, that moths from different host plant origins mate at random, remains untested. During the period of the study reported here, refuge crops included pigeon pea, conventional cotton (C3 plants), sorghum or maize (C4 plants). To identify the relative contributions made by these (and perhaps other) C3 and C4 plants to populations of H. armigera in cotton landscapes, we measured stable carbon isotopes (δ13C) within individual moths captured in the field. Overall, 53% of the moths were of C4 origin. In addition, we demonstrated, by comparing the stable isotope signatures of mating pairs of moths, that mating is indeed random amongst moths of different plant origins (i.e. C3 and C4). Stable nitrogen isotope signatures (δ15N) were recorded to further discriminate amongst host plant origins (e.g. legumes from non-legumes), but such measurements proved generally unsuitable. Since 2010, maize and sorghum are no longer used as dedicated refuges in Australia. However, these plants remain very common crops in cotton production regions, so their roles as ‘unstructured’ refuges seem likely to be significant.


2005 ◽  
Vol 71 (2) ◽  
pp. 948-954 ◽  
Author(s):  
Xinjun Xu ◽  
Liangying Yu ◽  
Yidong Wu

ABSTRACT A laboratory strain (GY) of Helicoverpa armigera (Hübner) was established from surviving larvae collected from transgenic cotton expressing a Bacillus thuringiensis var. kurstaki insecticidal protein (Bt cotton) in Gaoyang County, Hebei Province, People's Republic of China, in 2001. The GYBT strain was derived from the GY strain through 28 generations of selection with activated Cry1Ac delivered by diet surface contamination. When resistance to Cry1Ac in the GYBT strain increased to 564-fold after selection, we detected high levels of cross-resistance to Cry1Aa (103-fold) and Cry1Ab (>46-fold) in the GYBT strain with reference to those in the GY strain. The GYBT strain had a low level of cross-resistance to B. thuringiensis var. kurstaki formulation (Btk) (5-fold) and no cross-resistance to Cry2Aa (1.4-fold). Genetic analysis showed that Cry1Ac resistance in the GYBT strain was controlled by one autosomal and incompletely recessive gene. The cross-resistance pattern and inheritance mode suggest that the Cry1Ac resistance in the GYBT strain of H. armigera belongs to “mode 1,” the most common type of lepidopteran resistance to B. thuringiensis toxins. A cadherin gene was cloned and sequenced from both the GY and GYBT strains. Disruption of the cadherin gene by a premature stop codon was associated with a high level of Cry1Ac resistance in H. armigera. Tight linkage between Cry1Ac resistance and the cadherin locus was observed in a backcross analysis. Together with previous evidence found with Heliothis virescens and Pectinophora gossypiella, our results confirmed that the cadherin gene is a preferred target for developing DNA-based monitoring of B. thuringiensis resistance in field populations of lepidopteran pests.


2007 ◽  
Vol 32 (4) ◽  
pp. 366-375 ◽  
Author(s):  
GUO-PING LI ◽  
KONG-MING WU ◽  
FRED GOULD ◽  
JIAN-KANG WANG ◽  
JIN MIAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document