scholarly journals Effect of single-point mutations on the stability and immunogenicity of a recombinant ricin A chain subunit vaccine antigen

2013 ◽  
Vol 9 (4) ◽  
pp. 744-752 ◽  
Author(s):  
Justin C. Thomas ◽  
Joanne M. O’Hara ◽  
Lei Hu ◽  
Fei P. Gao ◽  
Sangeeta B. Joshi ◽  
...  
2011 ◽  
Vol 436 (2) ◽  
pp. 371-385 ◽  
Author(s):  
Iwona Sokołowska ◽  
Sébastien Wälchli ◽  
Grzegorz Węgrzyn ◽  
Kirsten Sandvig ◽  
Monika Słomińska-Wojewódzka

Ricin is a potent plant cytotoxin composed of an A-chain [RTA (ricin A-chain)] connected by a disulfide bond to a cell binding lectin B-chain [RTB (ricin B-chain)]. After endocytic uptake, the toxin is transported retrogradely to the ER (endoplasmic reticulum) from where enzymatically active RTA is translocated to the cytosol. This transport is promoted by the EDEM1 (ER degradation-enhancing α-mannosidase I-like protein 1), which is also responsible for directing aberrant proteins for ERAD (ER-associated protein degradation). RTA contains a 12-residue hydrophobic C-terminal region that becomes exposed after reduction of ricin in the ER. This region, especially Pro250, plays a crucial role in ricin cytotoxicity. In the present study, we introduced a point mutation [P250A (substitution of Pro250 with alanine)] in the hydrophobic region of RTA to study the intracellular transport of the modified toxin. The introduced mutation alters the secondary structure of RTA into a more helical structure. Mutation P250A increases endosomal–lysosomal degradation of the toxin, as well as reducing its transport from the ER to the cytosol. Transport of modified RTA to the cytosol, in contrast to wild-type RTA, appears to be EDEM1-independent. Importantly, the interaction between EDEM1 and RTAP250A is reduced. This is the first reported evidence that EDEM1 protein recognition might be determined by the structure of the ERAD substrate.


2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2021 ◽  
Author(s):  
Marisa L. Martino ◽  
Stephen N. Crooke ◽  
Marianne Manchester ◽  
M.G. Finn

Sign in / Sign up

Export Citation Format

Share Document