scholarly journals Control of secretory granule access to the plasma membrane by PI3 kinase-γ

Islets ◽  
2009 ◽  
Vol 1 (3) ◽  
pp. 266-268 ◽  
Author(s):  
Patrick E MacDonald
2016 ◽  
Vol 28 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Frédéric Boal ◽  
Lorna R. Hodgson ◽  
Sam E. Reed ◽  
Sophie E. Yarwood ◽  
Victoria J. Just ◽  
...  
Keyword(s):  

1976 ◽  
Vol 70 (2) ◽  
pp. 294-303 ◽  
Author(s):  
D T Theodosis ◽  
J Dreifuss ◽  
M C Harris ◽  
L Orci

During secretion of the neurohypophysial hormones, oxytocin and vasopressin, secretory granule membrane is added to the plasma membrane of the axon terminals. It is generally assumed that subsequent internalization of this additional membrane occurs by endocytosis. In order to study this process, we have traced the uptake of intravenously injected horseradish peroxidase by neurohypophysial axons in rats and golden hamsters. Peroxidase reaction product within the secretory axons was found mainly in vacuolar and C-shaped structures of a size comparable with or larger than the neurosecretory granules. Our observations suggest that these large horseradish peroxidase (HRP)-impregnated vacuoles arise directly by a form of macropinocytosis. Morphometric analysis indicated that this form of membrane retrieval increased significantly after the two types of stimuli used, reversible hemorrhage and electrical stimulation of the pituitary stalk. Microvesicular uptake of HRP was found to be comparatively less.


1992 ◽  
Vol 285 (2) ◽  
pp. 441-449 ◽  
Author(s):  
E L Watson ◽  
D DiJulio ◽  
D Kauffman ◽  
J Iversen ◽  
M R Robinovitch ◽  
...  

G proteins were identified in rat parotid plasma membrane-enriched fractions and in two populations of isolated secretory granule membrane fractions. Both [32P]ADP-ribosylation analysis with bacterial toxins and immunoblot analysis with crude and affinity-purified antisera specific for alpha subunits of G proteins were utilized. Pertussis toxin catalysed the ADP-ribosylation of a 41 kDa substrate in the plasma membrane fraction and both secretory granule membrane fractions. Cholera toxin catalysed the ADP-ribosylation of two substrates with molecular masses of 44 kDa and 48 kDa in the plasma membrane fraction but not in the secretory granule fractions. However, these substrates were detected in the secretory granule fractions when recombinant ADP-ribosylating factor was present in the assay medium. Immunoblot analysis of rat parotid membrane fractions using both affinity-purified and crude antisera revealed strong immunoreactivity of these membranes with anti-Gs alpha, -Gi alpha 1/alpha 2 and -Gi alpha 3 sera. In contrast Gs alpha was the major substrate found in both of the secretory granule fractions. Granule membrane fractions also reacted moderately with anti-Gi alpha 3 antiserum, and weakly with anti-Gi alpha 1/alpha 2 and -G(o) alpha sera. The results demonstrate that the parotid gland membranes express a number of G proteins. The presence of G proteins in secretory granule membranes suggests that they may play a direct role in regulating exocytosis in exocrine glands.


Cell Calcium ◽  
2006 ◽  
Vol 39 (6) ◽  
pp. 495-507 ◽  
Author(s):  
Aubin Penna ◽  
Véronique Juvin ◽  
Jean Chemin ◽  
Vincent Compan ◽  
Michael Monet ◽  
...  
Keyword(s):  

1998 ◽  
Vol 333 (1) ◽  
pp. 193-199 ◽  
Author(s):  
Aristea E. POULI ◽  
Evaggelia EMMANOUILIDOU ◽  
Chao ZHAO ◽  
Christina WASMEIER ◽  
John C. HUTTON ◽  
...  

To image the behaviour in real time of single secretory granules in neuroendocrine cells we have expressed cDNA encoding a fusion construct between the dense-core secretory-granule-membrane glycoprotein, phogrin (phosphatase on the granule of insulinoma cells), and enhanced green fluorescent protein (EGFP). Expressed in INS-1 β-cells and pheochromocytoma PC12 cells, the chimaera was localized efficiently (up to 95%) to dense-core secretory granules (diameter 200–1000 nm), identified by co-immunolocalization with anti-(pro-)insulin antibodies in INS-1 cells and dopamine β-hydroxylase in PC12 cells. Using laser-scanning confocal microscopy and digital image analysis, we have used this chimaera to monitor the effects of secretagogues on the dynamics of secretory granules in single living cells. In unstimulated INS-1 β-cells, granule movement was confined to oscillatory movement (dithering) with period of oscillation 5–10 s and mean displacement < 1 µm. Both elevated glucose concentrations (30 mM), and depolarization of the plasma membrane with K+, provoked large (5–10 µm) saltatory excursions of granules across the cell, which were never observed in cells maintained at low glucose concentration. By contrast, long excursions of granules occurred in PC12 cells without stimulation, and occurred predominantly from the cell body towards the cell periphery and neurite extensions. Purinergic-receptor activation with ATP provoked granule movement towards the membrane of PC12 cells, resulting in the transfer of fluorescence to the plasma membrane consistent with fusion of the granule and diffusion of the chimaera in the plasma membrane. These results illustrate the potential use of phogrin–EGFP chimeras in the study of secretory-granule dynamics, the regulation of granule–cytoskeletal interactions and the trafficking of a granule-specific transmembrane protein during the cycle of exocytosis and endocytosis.


2010 ◽  
Vol 138 (5) ◽  
pp. S-47
Author(s):  
Simone Lissner ◽  
Lilia Nold ◽  
Chih-Jen Hsieh ◽  
Jerrold R. Turner ◽  
Michael Gregor ◽  
...  

2017 ◽  
Vol 19 (10) ◽  
pp. e12751 ◽  
Author(s):  
Ravi Bharadwaj ◽  
Ranjana Arya ◽  
M. Shahid mansuri ◽  
Sudha Bhattacharya ◽  
Alok Bhattacharya

2020 ◽  
Author(s):  
Ada Admin ◽  
Hao Wang ◽  
Kouichi Mizuno ◽  
Noriko Takahashi ◽  
Eri Kobayashi ◽  
...  

Direct observation of fluorescence-labeled secretory granule exocytosis in living pancreatic β cells has revealed heterogeneous prefusion behaviors: some granules dwell beneath the plasma membrane before fusion, while others fuse immediately once they are recruited to the plasma membrane. Although the former mode seems to follow sequential docking-priming-fusion steps as found in synaptic vesicle exocytosis, the latter mode, which is unique to secretory granule exocytosis, has not been explored well. Here, we show that melanophilin, one of the effectors of the monomeric GTPase Rab27 on the granule membrane, is involved in such an accelerated mode of exocytosis. Both melanophilin-mutated <i>leaden</i> mouse and melanophilin-downregulated human pancreatic β cells exhibit impaired glucose-stimulated insulin secretion, with a specific reduction in fusion events that bypass stable docking to the plasma membrane. Upon stimulus-induced [Ca<sup>2+</sup>]<sub>i</sub> rise, melanophilin mediates this type of fusion by dissociating granules from myosin-Va and actin in the actin cortex and by associating them with a fusion-competent, open form of syntaxin-4 on the plasma membrane. These findings provide the hitherto unknown mechanism to support sustainable exocytosis by which granules are recruited from the cell interior and fuse promptly without stable predocking to the plasma membrane.


1993 ◽  
Vol 106 (2) ◽  
pp. 649-655 ◽  
Author(s):  
S.M. Hurtley

Recycling of a secretory granule membrane protein, dopamine-beta-hydroxylase, was examined in primary cultures of bovine adrenal chromaffin cells. Cells were stimulated to secrete in the presence of antibodies directed against the luminal domain of dopamine-beta-hydroxylase. The location of the antibodies after various times of reincubation and after a second secretory stimulus was assessed using immunofluorescence microscopy. Stimulation led to the exposure of dopamine-beta-hydroxylase at the plasma membrane, which could be detected by a polyclonal antibody in living and fixed cells. The plasma membrane dopamine-beta-hydroxylase, either alone or complexed with antibody, was rapidly internalized after removal of the secretagogue. Internalized protein-antibody complex remained stable for at least 24 hours of reculture. Twenty four hours after stimulation the cells with internalized antibody could respond to further stimulation and some of the antibody was re-exposed at the plasma membrane. These findings were confirmed using FACS analysis. This suggests that the antibody-protein complex had returned to secretory granules that could respond to further secretagogue stimulation.


Sign in / Sign up

Export Citation Format

Share Document