scholarly journals Endothelial Nitric Oxide Synthase Expression Is Progressively Increased in Primary Cerebral Microvascular Endothelial Cells During Hyperbaric Oxygen Exposure

2009 ◽  
Vol 2 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Xiongfei Xu ◽  
Zhongzhuang Wang ◽  
Quan Li ◽  
Xiang Xiao ◽  
Qinglin Lian ◽  
...  

Exposure to hyperbaric oxygen (HBO) can lead to seizures. Many studies have demonstrated that there exist a very close relationship between the alteration of cerebral blood flow (CBF) and the onset of seizures. Nitric oxide (NO) may play a key role in the change of CBF during exposure, and modulation of endothelial nitric oxide synthase (eNOS)-derived NO by HBO is responsible for early vasoconstriction, whereas late HBO-induced vasodilation depends upon a large amount of NO from both eNOS and neuronal nitric oxide synthase (nNOS). To investigate the effect of HBO on the activity and expression of eNOS in cerebral microvascular endothelial cells (CMEC) in vitro, primarily cultured CMEC from neonatal rats were exposed to oxygen at 500 kPa [5 atmosphere absolute (ATA)] for 10, 20, 30, 60 and 120 minutes (min), then eNOS activity, protein and mRNA contents in cells were detected. Our results showed that immediately after exposure, 30, 60 and 120 min HBO exposures did not alter NOS activity. When detected no matter immediately or six hours (h) after exposure, these exposures also did not alter eNOS protein and mRNA levels. However, when detected 24 h after exposure, 30, 60 and 120 min exposures upregulated eNOS protein content by 39%, 60% and 40% respectively. 10 and 20 min exposures upregulated eNOS mRNA content by about 15%, while 30, 60 and 120 min exposures upregulated it by about 20–30%. The increased eNOS protein and mRNA contents at 24 h after exposure may reflect new protein synthesis for eNOS. Our studies showed that with the exposing protocols we used, HBO did induce eNOS expression increase in CMEC. However, compared with the decrease of CBF in vivo, which occurred in a relative short time after rat was exposed to HBO above 4 ATA, the responses of eNOS in CMEC in vitro were a little slow. Thus we considered that for the vasodilation in the late period of HBO exposure before seizure, the effect of NO produced by eNOS was limited.

2000 ◽  
Vol 11 (10) ◽  
pp. 1848-1856 ◽  
Author(s):  
MARÍA M. ARRIERO ◽  
JUAN A. RODRÍGUEZ-FEO ◽  
ÁNGEL CELDRÁN ◽  
LOURDES SÁNCHEZ DE MIGUEL ◽  
FERNANDO GONZÁLEZ-FERNÁNDEZ ◽  
...  

Abstract. Changes in the expression of endothelial nitric oxide synthase (eNOS) in the peritoneum could be involved in the peritoneal dysfunction associated with peritoneal inflammation. Demonstrated recently in bovine endothelial cells was the existence of cytosolic proteins that bind to the 3′-untranslated region (3′-UTR) of eNOS mRNA and could be implicated in eNOS mRNA stabilization. The present work demonstrates that eNOS protein is expressed in human endothelial and mesothelial peritoneal cells. Escherichia coli lipopolysaccharide shortened the half-life of eNOS message, reducing eNOS protein expression in peritoneal mesothelial and endothelial cells. Moreover, under basal conditions, human peritoneal samples expressed cytosolic proteins that bind to the 3′-UTR of eNOS mRNA. The cytosolic proteins that directly bind to 3′-UTR were identified as a 60-kD protein. After incubation of human peritoneal samples with lipopolysaccharide, the binding activity of the cytosolic 60-kD protein increased in a time-dependent manner. Studies are now necessary to determine the involvement of this 60-kD protein in the regulation of eNOS expression in peritoneal cells and particularly its involvement in the peritoneal dysfunction associated with inflammatory reactions.


Sign in / Sign up

Export Citation Format

Share Document