scholarly journals Major concerns regarding food services based on news media reports during the COVID-19 outbreak using the topic modeling approach

2021 ◽  
Vol 15 (Suppl 1) ◽  
pp. S110
Author(s):  
Hyejin Yoon ◽  
Taejin Kim ◽  
Chang-Sik Kim ◽  
Namgyu Kim
2020 ◽  
Author(s):  
Qian Liu ◽  
Zequan Zheng ◽  
Jiabin Zheng ◽  
Qiuyi Chen ◽  
Guan Liu ◽  
...  

BACKGROUND In December 2019, a few coronavirus disease (COVID-19) cases were first reported in Wuhan, Hubei, China. Soon after, increasing numbers of cases were detected in other parts of China, eventually leading to a disease outbreak in China. As this dreadful disease spreads rapidly, the mass media has been active in community education on COVID-19 by delivering health information about this novel coronavirus, such as its pathogenesis, spread, prevention, and containment. OBJECTIVE The aim of this study was to collect media reports on COVID-19 and investigate the patterns of media-directed health communications as well as the role of the media in this ongoing COVID-19 crisis in China. METHODS We adopted the WiseSearch database to extract related news articles about the coronavirus from major press media between January 1, 2020, and February 20, 2020. We then sorted and analyzed the data using Python software and Python package Jieba. We sought a suitable topic number with evidence of the coherence number. We operated latent Dirichlet allocation topic modeling with a suitable topic number and generated corresponding keywords and topic names. We then divided these topics into different themes by plotting them into a 2D plane via multidimensional scaling. RESULTS After removing duplications and irrelevant reports, our search identified 7791 relevant news reports. We listed the number of articles published per day. According to the coherence value, we chose 20 as the number of topics and generated the topics’ themes and keywords. These topics were categorized into nine main primary themes based on the topic visualization figure. The top three most popular themes were prevention and control procedures, medical treatment and research, and global or local social and economic influences, accounting for 32.57% (n=2538), 16.08% (n=1258), and 11.79% (n=919) of the collected reports, respectively. CONCLUSIONS Topic modeling of news articles can produce useful information about the significance of mass media for early health communication. Comparing the number of articles for each day and the outbreak development, we noted that mass media news reports in China lagged behind the development of COVID-19. The major themes accounted for around half the content and tended to focus on the larger society rather than on individuals. The COVID-19 crisis has become a worldwide issue, and society has become concerned about donations and support as well as mental health among others. We recommend that future work addresses the mass media’s actual impact on readers during the COVID-19 crisis through sentiment analysis of news data.


10.2196/19118 ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. e19118 ◽  
Author(s):  
Qian Liu ◽  
Zequan Zheng ◽  
Jiabin Zheng ◽  
Qiuyi Chen ◽  
Guan Liu ◽  
...  

Background In December 2019, a few coronavirus disease (COVID-19) cases were first reported in Wuhan, Hubei, China. Soon after, increasing numbers of cases were detected in other parts of China, eventually leading to a disease outbreak in China. As this dreadful disease spreads rapidly, the mass media has been active in community education on COVID-19 by delivering health information about this novel coronavirus, such as its pathogenesis, spread, prevention, and containment. Objective The aim of this study was to collect media reports on COVID-19 and investigate the patterns of media-directed health communications as well as the role of the media in this ongoing COVID-19 crisis in China. Methods We adopted the WiseSearch database to extract related news articles about the coronavirus from major press media between January 1, 2020, and February 20, 2020. We then sorted and analyzed the data using Python software and Python package Jieba. We sought a suitable topic number with evidence of the coherence number. We operated latent Dirichlet allocation topic modeling with a suitable topic number and generated corresponding keywords and topic names. We then divided these topics into different themes by plotting them into a 2D plane via multidimensional scaling. Results After removing duplications and irrelevant reports, our search identified 7791 relevant news reports. We listed the number of articles published per day. According to the coherence value, we chose 20 as the number of topics and generated the topics’ themes and keywords. These topics were categorized into nine main primary themes based on the topic visualization figure. The top three most popular themes were prevention and control procedures, medical treatment and research, and global or local social and economic influences, accounting for 32.57% (n=2538), 16.08% (n=1258), and 11.79% (n=919) of the collected reports, respectively. Conclusions Topic modeling of news articles can produce useful information about the significance of mass media for early health communication. Comparing the number of articles for each day and the outbreak development, we noted that mass media news reports in China lagged behind the development of COVID-19. The major themes accounted for around half the content and tended to focus on the larger society rather than on individuals. The COVID-19 crisis has become a worldwide issue, and society has become concerned about donations and support as well as mental health among others. We recommend that future work addresses the mass media’s actual impact on readers during the COVID-19 crisis through sentiment analysis of news data.


2020 ◽  
Vol 13 (1) ◽  
pp. 272
Author(s):  
Aaron C. Sparks ◽  
Heather Hodges ◽  
Sarah Oliver ◽  
Eric R. A. N. Smith

In many public policy areas, such as climate change, news media reports about scientific research play an important role. In presenting their research, scientists are providing guidance to the public regarding public policy choices. How do people decide which scientists and scientific claims to believe? This is a question we address by drawing on the psychology of persuasion. We propose the hypothesis that people are more likely to believe local scientists than national or international scientists. We test this hypothesis with an experiment embedded in a national Internet survey. Our experiment yielded null findings, showing that people do not discount or ignore research findings on climate change if they come from Europe instead of Washington-based scientists or a leading university in a respondent’s home state. This reinforces evidence that climate change beliefs are relatively stable, based on party affiliation, and not malleable based on the source of the scientific report.


Author(s):  
Beth Lyall-Wilson ◽  
Nicolas Kim ◽  
Elizabeth Hohman

This paper describes the development and new application of a text modeling process for identifying human factors topics, such as fatigue, workload, and distraction in aviation safety reports. Current approaches to identifying human factors topic representations in text data rely on manual review from subject matter experts. The implementation of a semi-supervised text modeling method overcomes the need for lengthy manual review through an initial extraction of pre-defined human factors topics, freeing time for focus on analyzing the information. This modeling approach allows analysts to use keywords to define topics of interest up front and influence the convergence of the model toward a result that reflects them, which provides an advantage over classic topic modeling approaches where domain knowledge is not integrated into the generation of derived topics. This paper includes a description of the modeling approach and rationale, data used, evaluation methods, challenges, and suggestions for future applications.


2020 ◽  
Vol 10 ◽  
Author(s):  
Raffaele Sperandeo ◽  
Giovanni Messina ◽  
Daniela Iennaco ◽  
Francesco Sessa ◽  
Vincenzo Russo ◽  
...  

2015 ◽  
Vol 54 (04) ◽  
pp. 338-345 ◽  
Author(s):  
A. Fong ◽  
R. Ratwani

SummaryObjective: Patient safety event data repositories have the potential to dramatically improve safety if analyzed and leveraged appropriately. These safety event reports often consist of both structured data, such as general event type categories, and unstructured data, such as free text descriptions of the event. Analyzing these data, particularly the rich free text narratives, can be challenging, especially with tens of thousands of reports. To overcome the resource intensive manual review process of the free text descriptions, we demonstrate the effectiveness of using an unsupervised natural language processing approach.Methods: An unsupervised natural language processing technique, called topic modeling, was applied to a large repository of patient safety event data to identify topics, or themes, from the free text descriptions of the data. Entropy measures were used to evaluate and compare these topics to the general event type categories that were originally assigned by the event reporter.Results: Measures of entropy demonstrated that some topics generated from the un-supervised modeling approach aligned with the clinical general event type categories that were originally selected by the individual entering the report. Importantly, several new latent topics emerged that were not originally identified. The new topics provide additional insights into the patient safety event data that would not otherwise easily be detected.Conclusion: The topic modeling approach provides a method to identify topics or themes that may not be immediately apparent and has the potential to allow for automatic reclassification of events that are ambiguously classified by the event reporter.


Sign in / Sign up

Export Citation Format

Share Document