scholarly journals Green Synthesis of Iron Nanoparticles Using Green Tea leaves Extract

Author(s):  
Gottimukkala KSV
2021 ◽  
Vol 1795 (1) ◽  
pp. 012070
Author(s):  
Hamsa A. Abdulmageed ◽  
Abdulhadi. K. Judran ◽  
Farah T. M. Noori

2021 ◽  
Vol 42 ◽  
pp. 1498-1501
Author(s):  
Tejaswi Mareedu ◽  
VenkataRao Poiba ◽  
Meena Vangalapati

2017 ◽  
Vol 53 (10) ◽  
pp. 3201-3209 ◽  
Author(s):  
Maryam Nakhjavani ◽  
V. Nikkhah ◽  
M. M. Sarafraz ◽  
Saeed Shoja ◽  
Marzieh Sarafraz

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 658
Author(s):  
Zeynep Yücesoy-Özkan ◽  
Funda Sağırkaya ◽  
Melis Terzi ◽  
M. Mohib Rezayee ◽  
Esra Erdim

Textile wastewaters are characterized by high chemical oxygen demand (COD) concentration, strong color, high pH and temperature, and low biodegradability. Conventional treatment methods are considered to be inefficient to comply with the discharge limits. Recently, nano zero-valent iron (nZVI) technology has received increasing attention of the scientific community as an emerging technology for treatment of polluted streams. Due to smaller particle size, larger surface area and higher surface reactivity of iron nanoparticles, the removal of pollutants occur very rapidly. In this work, we synthesized nZVI employing green chemistry principles in a chemical reduction reaction. Iron precursor solution (FeSO4) was reduced by plant extracts that contain polyphenols. Plant polyphenols are known to possess strong reducing agent properties and act as effective metal chelators. The objective of this study was to characterize the green synthesized iron nanoparticles in terms of size and zeta potential parameters under various synthesis conditions (pH, precursor concentration and precursor/extract volume ratio) and compare the reactivity of the engineered nanoparticles for textile wastewater treatment. Green tea leaves-GT and Rose leaves-R were selected as the plant sources. Plant extracts were examined in terms of their Total Phenolic Content (TPC) expressed as Gallic Acid Equivalent (GAE). Rose leaves were found to possess 2062 mg/L TPC whereas, Green Tea leaves were found to have 1882 mg/L in grinded powder form. Results showed that 74% color removal along with 18% TOC removal could be achieved with 5 ppm of GT-ZVI nanoparticles synthesized at a 2/1 ratio (v/v) of precursor to extract. With the same concentration of R-ZVI nanoparticles, 78% color removal and 40% of TOC removal were observed.


2007 ◽  
Vol 12 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Dae-Jin Kim ◽  
Dae-Soo Chung ◽  
Sung-Chul C. Bai ◽  
Hyeong-Soo Kim ◽  
Yu-Bang Lee

Author(s):  
Ali Forouzanfar ◽  
Hamideh Sadat Mohammadipour ◽  
Fatemeh Forouzanfar

: Periodontal diseases are highly prevalent and can affect high percentage of the world population. Oxidative stress and inflammation plays an important role in the pathogenesis of periodontal diseases. Nowadays, more attention has been focused on the herbal remedies in the field of drug discovery. Green tea is an important source of polyphenol antioxidants, it has long been used as a beverage worldwide. The most interesting polyphenol components of green tea leaves that are related with health benefits are the catechins. Taken together this review suggested that green tea with its wide spectrum of activities could be a healthy alternative for controlling the damaging reactions seen in periodontal diseases.


Cellulose ◽  
2021 ◽  
Author(s):  
Nina Čuk ◽  
Martin Šala ◽  
Marija Gorjanc

Abstract The development of cellulose-based textiles that are functionalised with silver nanoparticles (AgNP), synthesised according to a green approach, and offer protection against ultraviolet (UV) radiation and pathogenic bacteria is very important today. In the present work we demonstrate the environmentally friendly approach to obtain such textile material by AgNP synthesis directly (in-situ) on cotton fabrics, using water extracts of plant food waste (green tea leaves, avocado seed and pomegranate peel) and alien invasive plants (Japanese knotweed rhizome, goldenrod flowers and staghorn sumac fruit) as reducing agents. The extracts were analysed for their total content of phenols and flavonoids and their antioxidant activity. The synthesised AgNP on cotton were round, of different size and amount depending on the reducing agent used. The highest amount of AgNP was found for samples where Japanese knotweed rhizome extract was used as reducing agent and the lowest where extracts of goldenrod flowers and green tea leaves were used. Regardless of the reducing agent used to form AgNP, all cotton samples showed excellent protection against E. coli and S. aureus bacteria and against UV radiation with UV protection factor values above 50. The best results for UV protection even after the twelve repetitive washing cycles were found for the sample functionalized with AgNP synthesised with an extract of the Japanese knotweed rhizome. Due to the presence of AgNP on cotton, the air permeability and thermal conductivity decreased. AgNP had no effect on the change in breaking strength or elongation of fabrics. Graphic abstract


2021 ◽  
Author(s):  
Zhu-Lin Luo ◽  
Hongyu Sun ◽  
Xiao-Bo Wu ◽  
Long Cheng ◽  
Jian-Dong Ren

Green tea has been considered as a health-promoting beverage and is widely consumed worldwide. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol derived from green tea leaves with potent antioxidative and chemopreventive...


Sign in / Sign up

Export Citation Format

Share Document