Effect of Fabric Softener on Properties of a Single Jersey Knitted Fabric Made of Cotton and Spandex Yarn

2012 ◽  
Vol 02 (01) ◽  
Author(s):  
Roqaya Sadek
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
A. Fouda ◽  
A. El-Hadidy ◽  
A. El-Deeb

Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS). The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan) with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe) which gave minimum knitting force (less stress on needles or knitting yarns) at different loop lengths for each structure.


2014 ◽  
Vol 9 (4) ◽  
pp. 155892501400900
Author(s):  
Ivana Salopek Cubric ◽  
Vesna Marija Potocic Matkovic ◽  
Zenun Skenderi

In order to investigate the changes of knitted fabric properties due to exposure to outdoor natural weathering, a series of single jersey fabrics made from different raw materials was produced. The fabrics were exposed to summer weather conditions in duration of three months. The exposure of knitted fabrics to outdoor natural weathering in the summer period affected all investigated properties, namely, structural properties, tensile properties and heat resistance. The most significant changes were: the vertical density increased up to 31%, the mass per unit area increased up to 26%, the breaking force decreased in both directions for up to 54% and the heat resistance decreased up to 18%.


2010 ◽  
Vol 101 (11) ◽  
pp. 941-949 ◽  
Author(s):  
M.R. Basiri ◽  
S. Shaikhzadeh Najar ◽  
M.E. Yazdan‐Shenas ◽  
M.M. Najafizadeh

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amany Khalil ◽  
Pavla Těšinová ◽  
Abdelhamid R.R. Aboalasaad

Abstract The aim of this work is to estimate the effect of loop length and Lycra weight percent (Lwp) on the geometrical and thermo-physiological comfort of elastic plain knitted fabric. Fifty single jersey knitted fabric samples were produced at five levels of Lycra weight percent (Lwp) (4%, 5%, 6%, 7%, and 8%) and loop length (2.7 mm, 2.9 mm, 3.1 mm, 3.3 mm, and 3.4 mm) with full plaited (fp) and half plaited (hp) of bare Lycra. The thermo-physiological comfort properties (thermal conductivity, absorptivity, and water vapor permeability), air permeability, and geometrical properties were measured at standard of each one. The results showed that the elastic single jersey knitted fabric thickness ranged between 3.12 times and 4.2 times of the yarn diameter (d). The fabric thickness increased when loop length is increased and decreased when Lwp is increased. The thermal conductivity, absorptivity, and water vapor resistance (WVR) decreased with Lwp increasing.


2020 ◽  
pp. 152808372097016
Author(s):  
Laimutė Stygienė ◽  
Sandra Varnaitė-Žuravliova ◽  
Aušra Abraitienė ◽  
Audronė Sankauskaitė ◽  
Virginija Skurkytė-Papievienė ◽  
...  

The use of a new generation chemical fibers with various functional additives offers new possibilities for the development of advanced (multi)functional textile products. Such compounds as phase change materials (PCMs), metals (like cooper, silver), also natural or chemical insect repellents, FIR emitting ceramic particles and etc. incorporated into fibres’ structure are essential for development of knitted fabrics directly contacting to the skin with effective thermoregulation and such protective properties as: antimicrobial, antistatic, repellence against blood sucking insects. The main parts of socks investigated were knitted in plain plated single jersey pattern. The 3-ply twisted yarns of new structures were used in the outer layer of socks. Yarns were made by using single yarns with PCMs, insect repellent permethrin, ceramic and silver additives containing fibres (Cell Solution® Clima, Cell Solution® Protection, Resistex® Silver). The inner layer of socks was made of polyester (PES) 3-ply twisted yarns with different number of filaments resulted in different structures of socks’ fabric. Based on all obtained thermoregulating and protective characteristics of investigated different knitted fabric structures of socks, the optimal knitted socks were selected. The obtained results of investigations are significant for the development of other knitted fabrics worn next to the skin.


2014 ◽  
Vol 26 (3) ◽  
pp. 222-234 ◽  
Author(s):  
E. Perumalsamy ◽  
J.C. Sakthivel ◽  
N. Anbumani

Purpose – The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite element analysis. In order to elaborate the study, high, medium and low tightness knitted fabrics were selected and deformation of fabrics analyzed in course, wales and bias directions (0, 45 and 90 degrees). Design/methodology/approach – This study focussed on uni-axial tensile test of produced test samples using Instron 6021 tester and a development of single-jersey knitted loop model using Auto Desk Inventor software (ADI). The knitted fabric material properties and knitted loop model was imported to ANSYS 12.0 software. Findings – Due to structural changes the tightness and thickness of knitted fabric decreases with increase in loop length The tensile result shows maximum breaking strength at course direction (13.43 kg f/mm2 at 2.7 mm) and maximum extension at wales direction (165.77 kg f/mm2 at 3.3 mm). When the loop length increases, the elongation of fabrics increased and load carrying capacity of fabrics reduced. The Young's modulus, Poisson's ratio and shear modulus of fabrics reduced with increase in loop length. The deformation of fabrics increased with increase in loop length. The increase in loop length gives large amount of structural changes and it is due to slacking or jamming in loops and loosening in dimensions. When comparing the deformation results, the variation within the fabric is higher and structural damage little more when increasing the loop length of the fabric. Originality/value – From ANOVA test, stress and strain distribution was statistically significant among course, wales and bias directions at 95 percent confidence level. The values got from Instron test indicates that testing direction can alter its deformation. In deformation analysis, comparing both experimental and prediction, high amount of structural changes observed in wales direction. The used tetrahedral elements can be used for contact analysis with high accuracy. For non-linear problems, consistent approach was proposed which makes the sense to compare with experimental methods. The proposed model will make possible developments and the preliminary validation tests shows good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document