scholarly journals Correlation between Lanczos Method and Exact Diagonalisation Method in the Study of Highly Correlated Electrons System

2015 ◽  
Vol 03 (01) ◽  
Author(s):  
Michael Obende Okanigbuan OR
1997 ◽  
Vol 11 (04n05) ◽  
pp. 355-667 ◽  
Author(s):  
P. Schlottmann

One-dimensional conductors are a long-standing topic of research with direct applications to organic conductors and mesoscopic rings. The discovery of the ceramic high-temperature superconductors has revitalized the interest in low-dimensional charge and spin fluctuations of highly correlated electron systems. Several mechanisms proposed to explain the high-T c superconductors invoke properties of the two-dimensional Hubbard model, but probably also some one-dimensional aspects are relevant. Numerous one-dimensional models for correlated electrons have been studied with various approximate, asymptotically exact and exact methods. These results lead to the concept of Luttinger liquid for interacting electron gases without excitation gaps (metallic systems). Characteristic of Luttinger liquids are the charge and spin separation, marginal Fermi liquid properties, e.g. the absence of quasiparticles in the vicinity of the Fermi surface, nonuniversal power-law singularities in the one-particle spectral function and the related absence of a discontinuity in the momentum distribution at the Fermi level, the power-law decay of correlation functions for long times and large distances, persistent currents in finite rings, etc. Due to the peculiarities of the phase space in one dimension some of the models have sufficient conserved currents to be completely integrable. We review exact results derived within the framework of Bethe's ansatz for integrable one-dimensional models of correlated electrons. The Bethe-ansatz method is presented by explicitly showing the steps leading to the solution of the N-component electron gas interacting via a δ-function potential (repulsive and attractive interaction), which is probably the simplest model of correlated electrons. Emphasis is given to the procedure to extract the groundstate properties, the classification of states, the excitation spectrum, the thermodynamics and finite size effects, such as critical exponents of correlation functions and persistent currents. The method is then applied to numerous other models, e.g. (i) a two-band model involving attractive and repulsive potentials and crystalline fields splitting the bands, (ii) the traditional Hubbard chain with attractive and repulsive U, (iii) the degenerate Hubbard model with repulsive U, which displays a metal–insulator transition at a finite U, (iv) a two-band Hubbard model with repulsive U, (v) the traditional supersymmetric t–J model (vi) a two-band supersymmetric t–J model with band-splitting and (vii) the N-component supersymmetric t–J model. Finally, results for models with long-range interactions, in particular r-2 and sinh -2(r) potentials, are briefly reviewed.


Author(s):  
Chris Rourk ◽  
Yunbo Huang ◽  
Minjing Chen ◽  
Cai Shen

Highly-correlated electrons – electrons that engage in strong electron-electron interactions – have been observed in transition metal oxides and quantum dots and can create unusual material behavior that is difficult to model, such as switching between a low resistance metal state and a high resistance Mott insulator state. Tests of devices using a layer-by-layer deposition process for forming multilayer arrays of ferritin (a transition metal (iron) oxide storage protein) have been previously reported that indicate that highly-correlated electron transport is occurring, consistent with models of electron transport in quantum dots. This paper reports the results of the effect of various degrees of structural homogeneity on the electrical characteristics of these ferritin arrays, as well as demonstrating that these structures can provide a switching function associated with the circuit that they are contained within, consistent with the observed behavior of highly-correlated electrons.


2001 ◽  
Vol 60 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Holger Schmid

Cannabis use does not show homogeneous patterns in a country. In particular, urbanization appears to influence prevalence rates, with higher rates in urban areas. A hierarchical linear model (HLM) was employed to analyze these structural influences on individuals in Switzerland. Data for this analysis were taken from the Switzerland survey of Health Behavior in School-Aged Children (HBSC) Study, the most recent survey to assess drug use in a nationally representative sample of 3473 15-year-olds. A total of 1487 male and 1620 female students indicated their cannabis use and their attributions of drug use to friends. As second level variables we included address density in the 26 Swiss Cantons as an indicator of urbanization and officially recorded offences of cannabis use in the Cantons as an indicator of repressive policy. Attribution of drug use to friends is highly correlated with cannabis use. The correlation is even more pronounced in urban Cantons. However, no association between recorded offences and cannabis use was found. The results suggest that structural variables influence individuals. Living in an urban area effects the attribution of drug use to friends. On the other hand repressive policy does not affect individual use.


Sign in / Sign up

Export Citation Format

Share Document